Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 301 (5631): 363-367

Copyright © 2003 by the American Association for the Advancement of Science

Hox10 and Hox11 Genes Are Required to Globally Pattern the Mammalian Skeleton

Deneen M. Wellik, and Mario R. Capecchi*

Abstract: Mice in which all members of the Hox10 or Hox11 paralogous group are disrupted provide evidence that these Hox genes are involved in global patterning of the axial and appendicular skeleton. In the absence of Hox10 function, no lumbar vertebrae are formed. Instead, ribs project from all posterior vertebrae, extending caudally from the last thoracic vertebrae to beyond the sacral region. In the absence of Hox11 function, sacral vertebrae are not formed and instead these vertebrae assume a lumbar identity. The redundancy among these paralogous family members is so great that this global aspect of Hox patterning is not apparent in mice that are mutant for five of the six paralogous alleles.

Howard Hughes Medical Institute and University of Utah, Salt Lake City, UT 84112, USA.

* To whom correspondence should be addressed. E-mail: mario.capecchi{at}

Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb.
B. Xu, S. M. Hrycaj, D. C. McIntyre, N. C. Baker, J. K. Takeuchi, L. Jeannotte, Z. B. Gaber, B. G. Novitch, and D. M. Wellik (2013)
PNAS 110, 19438-19443
   Abstract »    Full Text »    PDF »
Hox11 genes are required for regional patterning and integration of muscle, tendon and bone.
I. T. Swinehart, A. J. Schlientz, C. A. Quintanilla, D. P. Mortlock, and D. M. Wellik (2013)
Development 140, 4574-4582
   Abstract »    Full Text »    PDF »
What Evolvability Really Is.
R. L. Brown (2013)
Brit J Philos Sci
   Abstract »    Full Text »    PDF »
cis-regulatory change associated with snake body plan evolution.
J. H. Mansfield (2013)
PNAS 110, 10473-10474
   Full Text »    PDF »
Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine.
I. Guerreiro, A. Nunes, J. M. Woltering, A. Casaca, A. Novoa, T. Vinagre, M. E. Hunter, D. Duboule, and M. Mallo (2013)
PNAS 110, 10682-10686
   Abstract »    Full Text »    PDF »
Shox2 regulates progression through chondrogenesis in the mouse proximal limb.
B. E. Bobick and J. Cobb (2012)
J. Cell Sci. 125, 6071-6083
   Abstract »    Full Text »    PDF »
Tetrapod-like axial regionalization in an early ray-finned fish.
L. C. Sallan (2012)
Proc R Soc B 279, 3264-3271
   Abstract »    Full Text »    PDF »
Regulatory role for a conserved motif adjacent to the homeodomain of Hox10 proteins.
I. Guerreiro, A. Casaca, A. Nunes, S. Monteiro, A. Novoa, R. B. Ferreira, J. Bom, and M. Mallo (2012)
Development 139, 2703-2710
   Abstract »    Full Text »    PDF »
Genome-wide occupancy links Hoxa2 to Wnt-{beta}-catenin signaling in mouse embryonic development.
I. J. Donaldson, S. Amin, J. J. Hensman, E. Kutejova, M. Rattray, N. Lawrence, A. Hayes, C. M. Ward, and N. Bobola (2012)
Nucleic Acids Res. 40, 3990-4001
   Abstract »    Full Text »    PDF »
Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos.
J. Itou, H. Kawakami, T. Quach, M. Osterwalder, S. M. Evans, R. Zeller, and Y. Kawakami (2012)
Development 139, 1620-1629
   Abstract »    Full Text »    PDF »
The Synchrony and Cyclicity of Developmental Events.
Y. Saga (2012)
Cold Spring Harb Perspect Biol 4, a008201
   Abstract »    Full Text »    PDF »
Ezh2 regulates anteroposterior axis specification and proximodistal axis elongation in the developing limb.
L. A. Wyngaarden, P. Delgado-Olguin, I.-h. Su, B. G. Bruneau, and S. Hopyan (2011)
Development 138, 3759-3767
   Abstract »    Full Text »    PDF »
Axial Hox9 activity establishes the posterior field in the developing forelimb.
B. Xu and D. M. Wellik (2011)
PNAS 108, 4888-4891
   Abstract »    Full Text »    PDF »
Axial Elongation in Fishes: Using Morphological Approaches to Elucidate Developmental Mechanisms in Studying Body Shape.
A. B. Ward and R. S. Mehta (2010)
Integr. Comp. Biol. 50, 1106-1119
   Abstract »    Full Text »    PDF »
Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements.
E. Koyama, T. Yasuda, N. Minugh-Purvis, T. Kinumatsu, A. R. Yallowitz, D. M. Wellik, and M. Pacifici (2010)
Development 137, 3795-3800
   Abstract »    Full Text »    PDF »
Skeletal development in sloths and the evolution of mammalian vertebral patterning.
L. Hautier, V. Weisbecker, M. R. Sanchez-Villagra, A. Goswami, and R. J. Asher (2010)
PNAS 107, 18903-18908
   Abstract »    Full Text »    PDF »
Predicting embryonic patterning using mutual entropy fitness and in silico evolution.
P. Francois and E. D. Siggia (2010)
Development 137, 2385-2395
   Abstract »    Full Text »    PDF »
Segmental innervation in lumbosacral transitional vertebrae (LSTV): a comparative clinical and intraoperative EMG study.
P. Hinterdorfer, B. Parsaei, K. Stieglbauer, M. Sonnberger, J. Fischer, and G. Wurm (2010)
J. Neurol. Neurosurg. Psychiatry 81, 734-741
   Abstract »    Full Text »    PDF »
Microarray Analysis of Defective Cartilage in Hoxc8- and Hoxd4-Transgenic Mice.
C. Kruger and C. Kappen (2010)
Cartilage 1, 217-232
   Abstract »    Full Text »    PDF »
Development and the evolvability of human limbs.
N. M. Young, G. P. Wagner, and B. Hallgrimsson (2010)
PNAS 107, 3400-3405
   Abstract »    Full Text »    PDF »
Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes.
J. Muller, T. M. Scheyer, J. J. Head, P. M. Barrett, I. Werneburg, P. G. P. Ericson, D. Pol, and M. R. Sanchez-Villagra (2010)
PNAS 107, 2118-2123
   Abstract »    Full Text »    PDF »
Molecular Regulation of Limb Growth.
K. Lyons and M. Ezaki (2009)
jbjsam 91, 47-52
   Full Text »    PDF »
Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.
P. Leucht, J.-B. Kim, R. Amasha, A. W. James, S. Girod, and J. A. Helms (2008)
Development 135, 2845-2854
   Abstract »    Full Text »    PDF »
VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5.
D. Szumska, G. Pieles, R. Essalmani, M. Bilski, D. Mesnard, K. Kaur, A. Franklyn, K. El Omari, J. Jefferis, J. Bentham, et al. (2008)
Genes & Dev. 22, 1465-1477
   Abstract »    Full Text »    PDF »
Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons.
Y. Wu, G. Wang, S. A. Scott, and M. R. Capecchi (2008)
Development 135, 171-182
   Abstract »    Full Text »    PDF »
Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome.
B. Zhang, S. Jain, H. Song, M. Fu, R. O. Heuckeroth, J. M. Erlich, P. Y. Jay, and J. Milbrandt (2007)
Development 134, 3191-3201
   Abstract »    Full Text »    PDF »
Hox patterning of the vertebrate rib cage.
D. C. McIntyre, S. Rakshit, A. R. Yallowitz, L. Loken, L. Jeannotte, M. R. Capecchi, and D. M. Wellik (2007)
Development 134, 2981-2989
   Abstract »    Full Text »    PDF »
The rise and fall of Hox gene clusters.
D. Duboule (2007)
Development 134, 2549-2560
   Abstract »    Full Text »    PDF »
Appearances can be deceiving: phenotypes of knockout mice.
I. Barbaric, G. Miller, and T. N. Dear (2007)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Rethinking the proximodistal axis of the vertebrate limb in the molecular era.
C. Tabin and L. Wolpert (2007)
Genes & Dev. 21, 1433-1442
   Full Text »    PDF »
HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes.
M. Q. Hassan, R. Tare, S. H. Lee, M. Mandeville, B. Weiner, M. Montecino, A. J. van Wijnen, J. L. Stein, G. S. Stein, and J. B. Lian (2007)
Mol. Cell. Biol. 27, 3337-3352
   Abstract »    Full Text »    PDF »
Hox Control of Organ Size by Regulation of Morphogen Production and Mobility.
M. A. Crickmore and R. S. Mann (2006)
Science 313, 63-68
   Abstract »    Full Text »    PDF »
Pbx1/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shh expression.
T. D. Capellini, G. Di Giacomo, V. Salsi, A. Brendolan, E. Ferretti, D. Srivastava, V. Zappavigna, and L. Selleri (2006)
Development 133, 2263-2273
   Abstract »    Full Text »    PDF »
Gene Regulatory Networks and the Evolution of Animal Body Plans.
E. H. Davidson and D. H. Erwin (2006)
Science 311, 796-800
   Abstract »    Full Text »    PDF »
Hox genes specify vertebral types in the presomitic mesoderm.
M. Carapuco, A. Novoa, N. Bobola, and M. Mallo (2005)
Genes & Dev. 19, 2116-2121
   Abstract »    Full Text »    PDF »
New insights into craniofacial morphogenesis.
J. A. Helms, D. Cordero, and M. D. Tapadia (2005)
Development 132, 851-861
   Abstract »    Full Text »    PDF »
B-Cell Translocation Gene 2 (Btg2) Regulates Vertebral Patterning by Modulating Bone Morphogenetic Protein/Smad Signaling.
S. Park, Y. J. Lee, H.-J. Lee, T. Seki, K.-H. Hong, J. Park, H. Beppu, I. K. Lim, J.-W. Yoon, E. Li, et al. (2004)
Mol. Cell. Biol. 24, 10256-10262
   Abstract »    Full Text »    PDF »
Edward B. Lewis, 1918-2004.
J. F. Crow and W. Bender (2004)
Genetics 168, 1773-1783
   Full Text »    PDF »
HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis.
W. M. Knosp, V. Scott, H. P. Bachinger, and H. S. Stadler (2004)
Development 131, 4581-4592
   Abstract »    Full Text »    PDF »
Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh.
Y. Chen, V. Knezevic, V. Ervin, R. Hutson, Y. Ward, and S. Mackem (2004)
Development 131, 2339-2347
   Abstract »    Full Text »    PDF »
Contribution of Hox genes to the diversity of the hindbrain sensory system.
G. O. Gaufo, S. Wu, and M. R. Capecchi (2004)
Development 131, 1259-1266
   Abstract »    Full Text »    PDF »
Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod.
A. M. Boulet and M. R. Capecchi (2004)
Development 131, 299-309
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882