Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 301 (5632): 513-517

Copyright © 2003 by the American Association for the Advancement of Science

VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis

Emily H.-Y. Cheng,1 Tatiana V. Sheiko,2 Jill K. Fisher,1 William J. Craigen,2 Stanley J. Korsmeyer1*

Abstract: The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.

1 Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA. 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3498, USA.

* To whom correspondence should be addressed. E-mail: stanley_korsmeyer{at}dfci.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis.
D. Kranz and M. Boutros (2014)
EMBO J. 33, 181-197
   Abstract »    Full Text »    PDF »
Organization of the Mitochondrial Apoptotic BAK Pore: OLIGOMERIZATION OF THE BAK HOMODIMERS.
S. Aluvila, T. Mandal, E. Hustedt, P. Fajer, J. Y. Choe, and K. J. Oh (2014)
J. Biol. Chem. 289, 2537-2551
   Abstract »    Full Text »    PDF »
Assembly of the Bak Apoptotic Pore: A CRITICAL ROLE FOR THE BAK PROTEIN {alpha}6 HELIX IN THE MULTIMERIZATION OF HOMODIMERS DURING APOPTOSIS.
S. Ma, C. Hockings, K. Anwari, T. Kratina, S. Fennell, M. Lazarou, M. T. Ryan, R. M. Kluck, and G. Dewson (2013)
J. Biol. Chem. 288, 26027-26038
   Abstract »    Full Text »    PDF »
Modulation of Human Mitochondrial Voltage-dependent Anion Channel 2 (hVDAC-2) Structural Stability by Cysteine-assisted Barrel-lipid Interactions.
S. R. Maurya and R. Mahalakshmi (2013)
J. Biol. Chem. 288, 25584-25592
   Abstract »    Full Text »    PDF »
An Interaction between Bcl-xL and the Voltage-dependent Anion Channel (VDAC) Promotes Mitochondrial Ca2+ Uptake.
H. Huang, X. Hu, C. O. Eno, G. Zhao, C. Li, and C. White (2013)
J. Biol. Chem. 288, 19870-19881
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells: REGULATION BY FREE TUBULIN AND ERASTIN.
E. N. Maldonado, K. L. Sheldon, D. N. DeHart, J. Patnaik, Y. Manevich, D. M. Townsend, S. M. Bezrukov, T. K. Rostovtseva, and J. J. Lemasters (2013)
J. Biol. Chem. 288, 11920-11929
   Abstract »    Full Text »    PDF »
Direct activation of full-length proapoptotic BAK.
E. S. Leshchiner, C. R. Braun, G. H. Bird, and L. D. Walensky (2013)
PNAS 110, E986-E995
   Abstract »    Full Text »    PDF »
Multiple Functions of BCL-2 Family Proteins.
J. M. Hardwick and L. Soane (2013)
Cold Spring Harb Perspect Biol 5, a008722
   Abstract »    Full Text »    PDF »
In Vivo Activation of Azipropofol Prolongs Anesthesia and Reveals Synaptic Targets.
B. P. Weiser, M. B. Kelz, and R. G. Eckenhoff (2013)
J. Biol. Chem. 288, 1279-1285
   Abstract »    Full Text »    PDF »
Sirtuin-3 modulates Bak- and Bax-dependent apoptosis.
M. Verma, N. Shulga, and J. G. Pastorino (2013)
J. Cell Sci. 126, 274-288
   Abstract »    Full Text »    PDF »
Bcl-2 and Bcl-xL Suppress Glucose Signaling in Pancreatic {beta}-Cells.
D. S. Luciani, S. A. White, S. B. Widenmaier, V. V. Saran, F. Taghizadeh, X. Hu, M. F. Allard, and J. D. Johnson (2013)
Diabetes 62, 170-182
   Abstract »    Full Text »    PDF »
Where Killers Meet--Permeabilization of the Outer Mitochondrial Membrane during Apoptosis.
T. Bender and J.-C. Martinou (2013)
Cold Spring Harb Perspect Biol 5, a011106
   Abstract »    Full Text »    PDF »
VDAC: old protein with new roles in diabetes.
K. Sasaki, R. Donthamsetty, M. Heldak, Y.-E. Cho, B. T. Scott, and A. Makino (2012)
Am J Physiol Cell Physiol 303, C1055-C1060
   Abstract »    Full Text »    PDF »
Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control.
D. A. Kubli and A. B. Gustafsson (2012)
Circ. Res. 111, 1208-1221
   Abstract »    Full Text »    PDF »
Physiological Roles of the Permeability Transition Pore.
C. Brenner and M. Moulin (2012)
Circ. Res. 111, 1237-1247
   Abstract »    Full Text »    PDF »
Mechanisms of Cell Death in Heart Disease.
K. Konstantinidis, R. S. Whelan, and R. N. Kitsis (2012)
Arterioscler Thromb Vasc Biol 32, 1552-1562
   Abstract »    Full Text »    PDF »
ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells.
J. Matsuzaki, T. Torigoe, Y. Hirohashi, K. Kamiguchi, Y. Tamura, T. Tsukahara, T. Kubo, A. Takahashi, E. Nakazawa, E. Saka, et al. (2012)
Carcinogenesis 33, 996-1003
   Abstract »    Full Text »    PDF »
Expression of a Truncated Active Form of VDAC1 in Lung Cancer Associates with Hypoxic Cell Survival and Correlates with Progression to Chemotherapy Resistance.
M. C. Brahimi-Horn, D. Ben-Hail, M. Ilie, P. Gounon, M. Rouleau, V. Hofman, J. Doyen, B. Mari, V. Shoshan-Barmatz, P. Hofman, et al. (2012)
Cancer Res. 72, 2140-2150
   Abstract »    Full Text »    PDF »
Cytosolic Bax: DOES IT REQUIRE BINDING PROTEINS TO KEEP ITS PRO-APOPTOTIC ACTIVITY IN CHECK?.
S. Vogel, N. Raulf, S. Bregenhorn, M. L. Biniossek, U. Maurer, P. Czabotar, and C. Borner (2012)
J. Biol. Chem. 287, 9112-9127
   Abstract »    Full Text »    PDF »
Critical Role for Voltage-Dependent Anion Channel 2 in Infectious Bursal Disease Virus-Induced Apoptosis in Host Cells via Interaction with VP5.
Z. Li, Y. Wang, Y. Xue, X. Li, H. Cao, and S. J. Zheng (2012)
J. Virol. 86, 1328-1338
   Abstract »    Full Text »    PDF »
Reversible molecular pathology of skeletal muscle in spinal muscular atrophy.
C. A. Mutsaers, T. M. Wishart, D. J. Lamont, M. Riessland, J. Schreml, L. H. Comley, L. M. Murray, S. H. Parson, H. Lochmuller, B. Wirth, et al. (2011)
Hum. Mol. Genet. 20, 4334-4344
   Abstract »    Full Text »    PDF »
Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential.
Y.-b. Chen, M. A. Aon, Y.-T. Hsu, L. Soane, X. Teng, J. M. McCaffery, W.-C. Cheng, B. Qi, H. Li, K. N. Alavian, et al. (2011)
J. Cell Biol. 195, 263-276
   Abstract »    Full Text »    PDF »
Resveratrol Induces p53-independent, X-linked Inhibitor of Apoptosis Protein (XIAP)-mediated Bax Protein Oligomerization on Mitochondria to Initiate Cytochrome c Release and Caspase Activation.
R. Gogada, V. Prabhu, M. Amadori, R. Scott, S. Hashmi, and D. Chandra (2011)
J. Biol. Chem. 286, 28749-28760
   Abstract »    Full Text »    PDF »
Reconstitution of Proapoptotic BAK Function in Liposomes Reveals a Dual Role for Mitochondrial Lipids in the BAK-driven Membrane Permeabilization Process.
O. Landeta, A. Landajuela, D. Gil, S. Taneva, C. DiPrimo, B. Sot, M. Valle, V. A. Frolov, and G. Basanez (2011)
J. Biol. Chem. 286, 8213-8230
   Abstract »    Full Text »    PDF »
Integration of Apoptosis and Metabolism.
C. H. Yi, H. Vakifahmetoglu-Norberg, and J. Yuan (2011)
Cold Spring Harb Symp Quant Biol 76, 375-387
   Abstract »    Full Text »    PDF »
Inhibition of Bak Activation by VDAC2 Is Dependent on the Bak Transmembrane Anchor.
M. Lazarou, D. Stojanovski, A. E. Frazier, A. Kotevski, G. Dewson, W. J. Craigen, R. M. Kluck, D. L. Vaux, and M. T. Ryan (2010)
J. Biol. Chem. 285, 36876-36883
   Abstract »    Full Text »    PDF »
Tyrosine dephosphorylation is required for Bak activation in apoptosis.
J. L. Fox, F. Ismail, A. Azad, N. Ternette, S. Leverrier, M. J. Edelmann, B. M. Kessler, I. M. Leigh, S. Jackson, and A. Storey (2010)
EMBO J. 29, 3853-3868
   Abstract »    Full Text »    PDF »
Conformational Changes in BAK, a Pore-forming Proapoptotic Bcl-2 Family Member, upon Membrane Insertion and Direct Evidence for the Existence of BH3-BH3 Contact Interface in BAK Homo-oligomers.
K. J. Oh, P. Singh, K. Lee, K. Foss, S. Lee, M. Park, S. Lee, S. Aluvila, M. Park, P. Singh, et al. (2010)
J. Biol. Chem. 285, 28924-28937
   Abstract »    Full Text »    PDF »
Bax Forms an Oligomer via Separate, Yet Interdependent, Surfaces.
Z. Zhang, W. Zhu, S. M. Lapolla, Y. Miao, Y. Shao, M. Falcone, D. Boreham, N. McFarlane, J. Ding, A. E. Johnson, et al. (2010)
J. Biol. Chem. 285, 17614-17627
   Abstract »    Full Text »    PDF »
Neuroproteomics Approaches to Decipher Neuronal Regeneration and Degeneration.
F. Sun and V. Cavalli (2010)
Mol. Cell. Proteomics 9, 963-975
   Abstract »    Full Text »    PDF »
Neurologic Dysfunction and Male Infertility in Drosophila porin Mutants: A NEW MODEL FOR MITOCHONDRIAL DYSFUNCTION AND DISEASE.
B. H. Graham, Z. Li, E. P. Alesii, P. Versteken, C. Lee, J. Wang, and W. J. Craigen (2010)
J. Biol. Chem. 285, 11143-11153
   Abstract »    Full Text »    PDF »
Sorafenib Inhibits STAT3 Activation to Enhance TRAIL-Mediated Apoptosis in Human Pancreatic Cancer Cells.
S. Huang and F. A. Sinicrope (2010)
Mol. Cancer Ther. 9, 742-750
   Abstract »    Full Text »    PDF »
Apoptosis: it's BAK to VDAC.
G. C. Shore (2009)
EMBO Rep. 10, 1311-1313
   Full Text »    PDF »
VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria.
S. S. Roy, A. M. Ehrlich, W. J. Craigen, and G. Hajnoczky (2009)
EMBO Rep. 10, 1341-1347
   Abstract »    Full Text »    PDF »
The VDAC2-BAK Rheostat Controls Thymocyte Survival.
D. Ren, H. Kim, H.-C. Tu, T. D. Westergard, J. K. Fisher, J. A. Rubens, S. J. Korsmeyer, J. J.-D. Hsieh, and E. H.-Y. Cheng (2009)
Science Signaling 2, ra48
   Abstract »    Full Text »    PDF »
Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis.
G. Dewson and R. M. Kluck (2009)
J. Cell Sci. 122, 2801-2808
   Abstract »    Full Text »    PDF »
Lack of Bax Prevents Influenza A Virus-Induced Apoptosis and Causes Diminished Viral Replication.
J. E. McLean, E. Datan, D. Matassov, and Z. F. Zakeri (2009)
J. Virol. 83, 8233-8246
   Abstract »    Full Text »    PDF »
The pathophysiology of mitochondrial disease as modeled in the mouse.
D. C. Wallace and W. Fan (2009)
Genes & Dev. 23, 1714-1736
   Abstract »    Full Text »    PDF »
Context-dependent Bcl-2/Bak Interactions Regulate Lymphoid Cell Apoptosis.
H. Dai, X. W. Meng, S.-H. Lee, P. A. Schneider, and S. H. Kaufmann (2009)
J. Biol. Chem. 284, 18311-18322
   Abstract »    Full Text »    PDF »
Assembly of the Mitochondrial Apoptosis-induced Channel, MAC.
S. Martinez-Caballero, L. M. Dejean, M. S. Kinnally, K. J. Oh, C. A. Mannella, and K. W. Kinnally (2009)
J. Biol. Chem. 284, 12235-12245
   Abstract »    Full Text »    PDF »
Bcl-2 family on guard at the ER.
E. Szegezdi, D. C. MacDonald, T. Ni Chonghaile, S. Gupta, and A. Samali (2009)
Am J Physiol Cell Physiol 296, C941-C953
   Abstract »    Full Text »    PDF »
Control of mitochondrial apoptosis by the Bcl-2 family.
J. K. Brunelle and A. Letai (2009)
J. Cell Sci. 122, 437-441
   Full Text »    PDF »
Opening and closing the metabolite gate.
S. Tornroth-Horsefield and R. Neutze (2008)
PNAS 105, 19565-19566
   Full Text »    PDF »
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
R. Ujwal, D. Cascio, J.-P. Colletier, S. Faham, J. Zhang, L. Toro, P. Ping, and J. Abramson (2008)
PNAS 105, 17742-17747
   Abstract »    Full Text »    PDF »
Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.
S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet, and M. Lynch (2008)
Mol. Cancer Ther. 7, 3129-3140
   Abstract »    Full Text »    PDF »
Key role for Bak activation and Bak-Bax interaction in the apoptotic response to vinblastine.
M. Upreti, R. Chu, E. Galitovskaya, S. K. Smart, and T. C. Chambers (2008)
Mol. Cancer Ther. 7, 2224-2232
   Abstract »    Full Text »    PDF »
Analysis of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced Proteome Changes in 5L Rat Hepatoma Cells Reveals Novel Targets of Dioxin Action Including the Mitochondrial Apoptosis Regulator VDAC2.
H. Sarioglu, S. Brandner, M. Haberger, C. Jacobsen, J. Lichtmannegger, M. Wormke, and U. Andrae (2008)
Mol. Cell. Proteomics 7, 394-410
   Abstract »    Full Text »    PDF »
BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death.
N. N. Danial (2007)
Clin. Cancer Res. 13, 7254-7263
   Abstract »    Full Text »    PDF »
Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis.
B. Gillissen, F. Essmann, P. G. Hemmati, A. Richter, A. Richter, I. Oztop, G. Chinnadurai, B. Dorken, and P. T. Daniel (2007)
J. Cell Biol. 179, 701-715
   Abstract »    Full Text »    PDF »
The Mitochondrial TOM Complex Is Required for tBid/Bax-induced Cytochrome c Release.
M. Ott, E. Norberg, K. M. Walter, P. Schreiner, C. Kemper, D. Rapaport, B. Zhivotovsky, and S. Orrenius (2007)
J. Biol. Chem. 282, 27633-27639
   Abstract »    Full Text »    PDF »
Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins.
C. Brooks, Q. Wei, L. Feng, G. Dong, Y. Tao, L. Mei, Z.-J. Xie, and Z. Dong (2007)
PNAS 104, 11649-11654
   Abstract »    Full Text »    PDF »
Conserved roles of Sam50 and metaxins in VDAC biogenesis.
V. Kozjak-Pavlovic, K. Ross, N. Benlasfer, S. Kimmig, A. Karlas, and T. Rudel (2007)
EMBO Rep. 8, 576-582
   Abstract »    Full Text »    PDF »
Phosphorothioate oligonucleotides reduce mitochondrial outer membrane permeability to ADP.
W. Tan, J. C. Lai, P. Miller, C. A. Stein, and M. Colombini (2007)
Am J Physiol Cell Physiol 292, C1388-C1397
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Permeabilization in Cell Death.
G. Kroemer, L. Galluzzi, and C. Brenner (2007)
Physiol Rev 87, 99-163
   Abstract »    Full Text »    PDF »
Bcl-2 family members and apoptosis, taken to heart.
A. B. Gustafsson and R. A. Gottlieb (2007)
Am J Physiol Cell Physiol 292, C45-C51
   Abstract »    Full Text »    PDF »
The Vaccinia Virus Protein F1L Interacts with Bim and Inhibits Activation of the Pro-apoptotic Protein Bax.
J. M. Taylor, D. Quilty, L. Banadyga, and M. Barry (2006)
J. Biol. Chem. 281, 39728-39739
   Abstract »    Full Text »    PDF »
Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels.
G. Szabadkai, K. Bianchi, P. Varnai, D. De Stefani, M. R. Wieckowski, D. Cavagna, A. I. Nagy, T. Balla, and R. Rizzuto (2006)
J. Cell Biol. 175, 901-911
   Abstract »    Full Text »    PDF »
Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins.
K. Setoguchi, H. Otera, and K. Mihara (2006)
EMBO J. 25, 5635-5647
   Abstract »    Full Text »    PDF »
A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro.
K. J. Oh, S. Barbuto, K. Pitter, J. Morash, L. D. Walensky, and S. J. Korsmeyer (2006)
J. Biol. Chem. 281, 36999-37008
   Abstract »    Full Text »    PDF »
Evidence against Calcium as a Mediator of Mitochondrial Dysfunction during Apoptosis Induced by Arachidonic Acid and Other Free Fatty Acids.
R. C. Maia, C. A. Culver, and S. M. Laster (2006)
J. Immunol. 177, 6398-6404
   Abstract »    Full Text »    PDF »
Comparative proteomic profiles of meningioma subtypes..
H. Okamoto, J. Li, A. O. Vortmeyer, H. Jaffe, Y.-S. Lee, S. Glasker, T.-S. Sohn, W. Zeng, B. Ikejiri, M. A. Proescholdt, et al. (2006)
Cancer Res. 66, 10199-10204
   Abstract »    Full Text »    PDF »
Hunting Interactomes of a Membrane Protein: Obtaining the Largest Set of Voltage-Dependent Anion Channel-Interacting Protein Epitopes.
I. Roman, J. Figys, G. Steurs, and M. Zizi (2006)
Mol. Cell. Proteomics 5, 1667-1680
   Abstract »    Full Text »    PDF »
The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of Aspergillus fumigatus virulence in mice.
J. Pardo, C. Urban, E. M. Galvez, P. G. Ekert, U. Muller, J. Kwon-Chung, M. Lobigs, A. Mullbacher, R. Wallich, C. Borner, et al. (2006)
J. Cell Biol. 174, 509-519
   Abstract »    Full Text »    PDF »
A proteomic investigation into a human gastric cancer cell line BGC823 treated with diallyl trisulfide.
N. Li, R. Guo, W. Li, J. Shao, S. Li, K. Zhao, X. Chen, N. Xu, S. Liu, and Y. Lu (2006)
Carcinogenesis 27, 1222-1231
   Abstract »    Full Text »    PDF »
Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha..
C. Hetz, P. Bernasconi, J. Fisher, A.-H. Lee, M. C. Bassik, B. Antonsson, G. S. Brandt, N. N. Iwakoshi, A. Schinzel, L. H. Glimcher, et al. (2006)
Science 312, 572-576
   Abstract »    Full Text »    PDF »
Inhibition of the phosphatidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis..
X. Liu, Y. Shi, V. L. Giranda, and Y. Luo (2006)
Mol. Cancer Ther. 5, 494-501
   Abstract »    Full Text »    PDF »
Genetic Demonstration That the Plasma Membrane Maxianion Channel and Voltage-dependent Anion Channels Are Unrelated Proteins.
R. Z. Sabirov, T. Sheiko, H. Liu, D. Deng, Y. Okada, and W. J. Craigen (2006)
J. Biol. Chem. 281, 1897-1904
   Abstract »    Full Text »    PDF »
The Vaccinia Virus F1L Protein Interacts with the Proapoptotic Protein Bak and Inhibits Bak Activation.
S. T. Wasilenko, L. Banadyga, D. Bond, and M. Barry (2005)
J. Virol. 79, 14031-14043
   Abstract »    Full Text »    PDF »
MAP-1 is a mitochondrial effector of Bax.
K. O. Tan, N. Y. Fu, S. K. Sukumaran, S.-L. Chan, J. H. Kang, K. L. Poon, B. S. Chen, and V. C. Yu (2005)
PNAS 102, 14623-14628
   Abstract »    Full Text »    PDF »
Mutually Exclusive Subsets of BH3-Only Proteins Are Activated by the p53 and c-Jun N-Terminal Kinase/c-Jun Signaling Pathways during Cortical Neuron Apoptosis Induced by Arsenite.
H. K. Wong, M. Fricker, A. Wyttenbach, A. Villunger, E. M. Michalak, A. Strasser, and A. M. Tolkovsky (2005)
Mol. Cell. Biol. 25, 8732-8747
   Abstract »    Full Text »    PDF »
WT1 Induces Apoptosis through Transcriptional Regulation of the Proapoptotic Bcl-2 Family Member Bak.
D. J. Morrison, M. A. English, and J. D. Licht (2005)
Cancer Res. 65, 8174-8182
   Abstract »    Full Text »    PDF »
Transcripts from a human primordial follicle cDNA library.
M. D. Serafica, T. Goto, and A. O. Trounson (2005)
Hum. Reprod. 20, 2074-2091
   Abstract »    Full Text »    PDF »
BH3-only proteins in control: specificity regulates MCL-1 and BAK-mediated apoptosis.
C. Gelinas and E. White (2005)
Genes & Dev. 19, 1263-1268
   Full Text »    PDF »
Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins.
S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C.S. Huang (2005)
Genes & Dev. 19, 1294-1305
   Abstract »    Full Text »    PDF »
Bax-dependent Regulation of Bak by Voltage-dependent Anion Channel 2.
D. Chandra, G. Choy, P. T. Daniel, and D. G. Tang (2005)
J. Biol. Chem. 280, 19051-19061
   Abstract »    Full Text »    PDF »
Oligomeric Bax Is a Component of the Putative Cytochrome c Release Channel MAC, Mitochondrial Apoptosis-induced Channel.
L. M. Dejean, S. Martinez-Caballero, L. Guo, C. Hughes, O. Teijido, T. Ducret, F. Ichas, S. J. Korsmeyer, B. Antonsson, E. A. Jonas, et al. (2005)
Mol. Biol. Cell 16, 2424-2432
   Abstract »    Full Text »    PDF »
Newcomers in the process of mitochondrial permeabilization.
S. Lucken-Ardjomande and J.-C. Martinou (2005)
J. Cell Sci. 118, 473-483
   Abstract »    Full Text »    PDF »
Conformational Changes in BID, a Pro-apoptotic BCL-2 Family Member, upon Membrane Binding: A SITE-DIRECTED SPIN LABELING STUDY.
K. J. Oh, S. Barbuto, N. Meyer, R.-S. Kim, R. J. Collier, and S. J. Korsmeyer (2005)
J. Biol. Chem. 280, 753-767
   Abstract »    Full Text »    PDF »
Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum.
S. A. Oakes, L. Scorrano, J. T. Opferman, M. C. Bassik, M. Nishino, T. Pozzan, and S. J. Korsmeyer (2005)
PNAS 102, 105-110
   Abstract »    Full Text »    PDF »
(-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance.
C. L. Oliver, M. B. Miranda, S. Shangary, S. Land, S. Wang, and D. E. Johnson (2005)
Mol. Cancer Ther. 4, 23-31
   Abstract »    Full Text »    PDF »
Mitochondrial Proteomic Analysis of a Cell Line Model of Familial Amyotrophic Lateral Sclerosis.
K. Fukada, F. Zhang, A. Vien, N. R. Cashman, and H. Zhu (2004)
Mol. Cell. Proteomics 3, 1211-1223
   Abstract »    Full Text »    PDF »
The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis.
M. T. Crow, K. Mani, Y.-J. Nam, and R. N. Kitsis (2004)
Circ. Res. 95, 957-970
   Abstract »    Full Text »    PDF »
Global Analysis of Host Cell Gene Expression Late during Cytomegalovirus Infection Reveals Extensive Dysregulation of Cell Cycle Gene Expression and Induction of Pseudomitosis Independent of US28 Function.
L. Hertel and E. S. Mocarski (2004)
J. Virol. 78, 11988-12011
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion Channel-1 (VDAC-1) Contributes to ATP Release and Cell Volume Regulation in Murine Cells.
S. F. Okada, W. K. O'Neal, P. Huang, R. A. Nicholas, L. E. Ostrowski, W. J. Craigen, E. R. Lazarowski, and R. C. Boucher (2004)
J. Gen. Physiol. 124, 513-526
   Abstract »    Full Text »    PDF »
BAD Is a Pro-survival Factor Prior to Activation of Its Pro-apoptotic Function.
S. Y. Seo, Y.-b. Chen, I. Ivanovska, A. M. Ranger, S. J. Hong, V. L. Dawson, S. J. Korsmeyer, D. S. Bellows, Y. Fannjiang, and J. M. Hardwick (2004)
J. Biol. Chem. 279, 42240-42249
   Abstract »    Full Text »    PDF »
Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals.
E. A. Jonas, J. A. Hickman, M. Chachar, B. M. Polster, T. A. Brandt, Y. Fannjiang, I. Ivanovska, G. Basanez, K. W. Kinnally, J. Zimmerberg, et al. (2004)
PNAS 101, 13590-13595
   Abstract »    Full Text »    PDF »
Bax Does Not Directly Participate in the Ca2+-induced Permeability Transition of Isolated Mitochondria.
U. De Marchi, S. Campello, I. Szabo, F. Tombola, J.-C. Martinou, and M. Zoratti (2004)
J. Biol. Chem. 279, 37415-37422
   Abstract »    Full Text »    PDF »
A Caspase-8-independent Signaling Pathway Activated by Fas Ligation Leads to Exposure of the Bak N Terminus.
L. Zhang, S. Shimizu, K. Sakamaki, S. Yonehara, and Y. Tsujimoto (2004)
J. Biol. Chem. 279, 33865-33874
   Abstract »    Full Text »    PDF »
The Pathophysiology of Mitochondrial Cell Death.
D. R. Green and G. Kroemer (2004)
Science 305, 626-629
   Abstract »    Full Text »    PDF »
Interleukin-7 Inactivates the Pro-apoptotic Protein Bad Promoting T Cell Survival.
W. Q. Li, Q. Jiang, A. R. Khaled, J. R. Keller, and S. K. Durum (2004)
J. Biol. Chem. 279, 29160-29166
   Abstract »    Full Text »    PDF »
Functional Characterization of a Second Porin Isoform in Drosophila melanogaster: DMPORIN2 FORMS VOLTAGE-INDEPENDENT CATION-SELECTIVE PORES.
R. Aiello, A. Messina, B. Schiffler, R. Benz, G. Tasco, R. Casadio, and V. De Pinto (2004)
J. Biol. Chem. 279, 25364-25373
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion-selective Channels VDAC2 and VDAC3 Are Abundant Proteins in Bovine Outer Dense Fibers, a Cytoskeletal Component of the Sperm Flagellum.
K.-D. Hinsch, V. De Pinto, V. A. Aires, X. Schneider, A. Messina, and E. Hinsch (2004)
J. Biol. Chem. 279, 15281-15288
   Abstract »    Full Text »    PDF »
Neuroactive Steroid Interactions with Voltage-Dependent Anion Channels: Lack of Relationship to GABAA Receptor Modulation and Anesthesia.
R. Darbandi-Tonkabon, B. D. Manion, W. R. Hastings, W. J. Craigen, G. Akk, J. R. Bracamontes, Y. He, T. V. Sheiko, J. H. Steinbach, S. J. Mennerick, et al. (2004)
J. Pharmacol. Exp. Ther. 308, 502-511
   Abstract »    Full Text »    PDF »
The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore.
A. M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M. A. Forte, P. Bernardi, and J. A. Kemp (2003)
J. Biol. Chem. 278, 49812-49818
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882