Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 301 (5632): 525-527

Copyright © 2003 by the American Association for the Advancement of Science

Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice

Satchidananda Panda,1,2* Ignacio Provencio,4* Daniel C. Tu,5* Susana S. Pires,1 Mark D. Rollag,4 Ana Maria Castrucci,4,7 Mathew T. Pletcher,1,2 Trey K. Sato,1,2 Tim Wiltshire,1 Mary Andahazy,1 Steve A. Kay,2 Russell N. Van Gelder,5,6 John B. Hogenesch1,3{dagger}

Abstract: Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.

1 Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA. 2 Department of Cell Biology, 3 Department of Neuropharmacology, Scripps Research Institute, 10550 North Torrey Pines Road, San Diego, CA 92037, USA. 4 Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA. 5 Department of Ophthalmology and Visual Sciences, 6 Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. 7 Department of Physiology, Biosciences Institute, University of São Paulo, Rua do Matão, travessa 14, 05508-900, São Paulo, Brazil.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: hogenesch{at}

Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin.
E. D. Buhr and R. N. Van Gelder (2014)
PNAS 111, 8625-8630
   Abstract »    Full Text »    PDF »
Evolution of Mammalian Opn5 as a Specialized UV-absorbing Pigment by a Single Amino Acid Mutation.
T. Yamashita, K. Ono, H. Ohuchi, A. Yumoto, H. Gotoh, S. Tomonari, K. Sakai, H. Fujita, Y. Imamoto, S. Noji, et al. (2014)
J. Biol. Chem. 289, 3991-4000
   Abstract »    Full Text »    PDF »
Assessing Rod, Cone, and Melanopsin Contributions to Human Pupil Flicker Responses.
P. A. Barrionuevo, N. Nicandro, J. J. McAnany, A. J. Zele, P. Gamlin, and D. Cao (2014)
Invest. Ophthalmol. Vis. Sci. 55, 719-727
   Abstract »    Full Text »    PDF »
Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors.
H. C. van Diepen, A. Ramkisoensing, S. N. Peirson, R. G. Foster, and J. H. Meijer (2013)
FASEB J 27, 4204-4212
   Abstract »    Full Text »    PDF »
Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration.
G. Esquiva, P. Lax, and N. Cuenca (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4605-4618
   Abstract »    Full Text »    PDF »
Nocturnal Light and Nocturnal Rodents: Similar Regulation of Disparate Functions?.
L. P. Morin (2013)
J Biol Rhythms 28, 95-106
   Abstract »    Full Text »    PDF »
Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA.
C. L. Atkinson, J. Feng, and D.-Q. Zhang (2013)
J Neurophysiol 109, 1589-1599
   Abstract »    Full Text »    PDF »
Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6.
D. D. Clark, M. R. Gorman, M. Hatori, J. D. Meadows, S. Panda, and P. L. Mellon (2013)
J Biol Rhythms 28, 15-25
   Abstract »    Full Text »    PDF »
Melanopsin and Rod-Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans.
J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley (2012)
J. Neurosci. 32, 14242-14253
   Abstract »    Full Text »    PDF »
Chromatic Pupillometry Dissects Function of the Three Different Light-Sensitive Retinal Cell Populations in RPE65 Deficiency.
B. Lorenz, E. Strohmayr, S. Zahn, C. Friedburg, M. Kramer, M. Preising, and K. Stieger (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5641-5652
   Abstract »    Full Text »    PDF »
Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo.
T. J. Sexton, M. Golczak, K. Palczewski, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 20888-20897
   Abstract »    Full Text »    PDF »
Alerting effects of daytime light exposure - a proposed link between light exposure and brain mechanisms.
E. Rautkyla, M. Puolakka, and L. Halonen (2012)
Lighting Research and Technology 44, 238-252
   Abstract »    PDF »
Rhodopsin 5- and Rhodopsin 6-Mediated Clock Synchronization in Drosophila melanogaster Is Independent of Retinal Phospholipase C-{beta} Signaling.
J. Szular, H. Sehadova, C. Gentile, G. Szabo, W.-H. Chou, S. G. Britt, and R. Stanewsky (2012)
J Biol Rhythms 27, 25-36
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
Effect of Circadian Clock Gene Mutations on Nonvisual Photoreception in the Mouse.
L. Owens, E. Buhr, D. C. Tu, T. L. Lamprecht, J. Lee, and R. N. Van Gelder (2012)
Invest. Ophthalmol. Vis. Sci. 53, 454-460
   Abstract »    Full Text »    PDF »
A Distinct Contribution of Short-Wavelength-Sensitive Cones to Light-Evoked Activity in the Mouse Pretectal Olivary Nucleus.
A. E. Allen, T. M. Brown, and R. J. Lucas (2011)
J. Neurosci. 31, 16833-16843
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive Retinal Ganglion Cells.
M. T. H. Do and K.-W. Yau (2010)
Physiol Rev 90, 1547-1581
   Abstract »    Full Text »    PDF »
A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds.
Y. Nakane, K. Ikegami, H. Ono, N. Yamamoto, S. Yoshida, K. Hirunagi, S. Ebihara, Y. Kubo, and T. Yoshimura (2010)
PNAS 107, 15264-15268
   Abstract »    Full Text »    PDF »
Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses.
S.-i. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi (2010)
Proc R Soc B 277, 2485-2492
   Abstract »    Full Text »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light.
J. J. Gooley, S. M. W. Rajaratnam, G. C. Brainard, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley (2010)
Science Translational Medicine 2, 31ra33
   Abstract »    Full Text »    PDF »
Millisecond Light Pulses Make Mice Stop Running, then Display Prolonged Sleep-Like Behavior in the Absence of Light.
L.P. Morin and K.M. Studholme (2009)
J Biol Rhythms 24, 497-508
   Abstract »    PDF »
Psychophysiological effects of coloured lighting on older adults.
L. Laufer, E. Lang, L. Izso, and E. Nemeth (2009)
Lighting Research and Technology 41, 371-378
   Abstract »    PDF »
Profile of Steve Kay.
B. Trivedi (2009)
PNAS 106, 18051-18053
   Full Text »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Evolution of opsins and phototransduction.
Y. Shichida and T. Matsuyama (2009)
Phil Trans R Soc B 364, 2881-2895
   Abstract »    Full Text »    PDF »
Circadian Modulation of Melanopsin-Driven Light Response in Rat Ganglion-Cell Photoreceptors.
S. Weng, K. Y. Wong, and D. M. Berson (2009)
J Biol Rhythms 24, 391-402
   Abstract »    PDF »
Light-transduction in melanopsin-expressing photoreceptors of Amphioxus.
M. del Pilar Gomez, J. M. Angueyra, and E. Nasi (2009)
PNAS 106, 9081-9086
   Abstract »    Full Text »    PDF »
Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
C. M. Altimus, A. D. Guler, K. L. Villa, D. S. McNeill, T. A. LeGates, and S. Hattar (2008)
PNAS 105, 19998-20003
   Abstract »    Full Text »    PDF »
Strong Resetting of the Mammalian Clock by Constant Light Followed by Constant Darkness.
R. Chen, D.-o. Seo, E. Bell, C. von Gall, and C. Lee (2008)
J. Neurosci. 28, 11839-11847
   Abstract »    Full Text »    PDF »
Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin.
B. Lin, A. Koizumi, N. Tanaka, S. Panda, and R. H. Masland (2008)
PNAS 105, 16009-16014
   Abstract »    Full Text »    PDF »
Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light.
G. C. Brainard, D. Sliney, J. P. Hanifin, G. Glickman, B. Byrne, J. M. Greeson, S. Jasser, E. Gerner, and M. D. Rollag (2008)
J Biol Rhythms 23, 379-386
   Abstract »    PDF »
Absence of Long-Wavelength Photic Potentiation of Murine Intrinsically Photosensitive Retinal Ganglion Cell Firing In Vitro.
K. Mawad and R. N. Van Gelder (2008)
J Biol Rhythms 23, 387-391
   Abstract »    PDF »
Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons.
D.-Q. Zhang, K. Y. Wong, P. J. Sollars, D. M. Berson, G. E. Pickard, and D. G. McMahon (2008)
PNAS 105, 14181-14186
   Abstract »    Full Text »    PDF »
Retinal pathways influence temporal niche.
S. E. Doyle, T. Yoshikawa, H. Hillson, and M. Menaker (2008)
PNAS 105, 13133-13138
   Abstract »    Full Text »    PDF »
Retina-clock relations dictate nocturnal to diurnal behaviors.
D. S. McNeill, C. M. Altimus, and S. Hattar (2008)
PNAS 105, 12645-12646
   Full Text »    PDF »
Cholecystokinin-A receptors regulate photic input pathways to the circadian clock.
T. Shimazoe, M. Morita, S. Ogiwara, T. Kojiya, J. Goto, M. Kamakura, T. Moriya, K. Shinohara, S. Takiguchi, A. Kono, et al. (2008)
FASEB J 22, 1479-1490
   Abstract »    Full Text »    PDF »
Photic Sensitivity Ranges of Hamster Pupillary and Circadian Phase Responses Do Not Overlap.
R. A. Hut, M. Oklejewicz, C. Rieux, and H. M. Cooper (2008)
J Biol Rhythms 23, 37-48
   Abstract »    PDF »
Light-Evoked Calcium Responses of Isolated Melanopsin-Expressing Retinal Ganglion Cells.
A. T. E. Hartwick, J. R. Bramley, J. Yu, K. T. Stevens, C. N. Allen, W. H. Baldridge, P. J. Sollars, and G. E. Pickard (2007)
J. Neurosci. 27, 13468-13480
   Abstract »    Full Text »    PDF »
Circadian clocks: regulators of endocrine and metabolic rhythms.
M. Hastings, J. S O'Neill, and E. S Maywood (2007)
J. Endocrinol. 195, 187-198
   Abstract »    Full Text »    PDF »
Evaluation of Retinal Status Using Chromatic Pupil Light Reflex Activity in Healthy and Diseased Canine Eyes.
S. D. Grozdanic, M. Matic, D. S. Sakaguchi, and R. H. Kardon (2007)
Invest. Ophthalmol. Vis. Sci. 48, 5178-5183
   Abstract »    Full Text »    PDF »
The Retina-Attached SCN Slice Preparation: An In Vitro Mammalian Circadian Visual System.
K. Y. Wong, D. M. Graham, and D. M. Berson (2007)
J Biol Rhythms 22, 400-410
   Abstract »    PDF »
Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo.
L. S. Mure, C. Rieux, S. Hattar, and H. M. Cooper (2007)
J Biol Rhythms 22, 411-424
   Abstract »    PDF »
Responses of Suprachiasmatic Nucleus Neurons to Light and Dark Adaptation: Relative Contributions of Melanopsin and Rod Cone Inputs.
E. Drouyer, C. Rieux, R. A. Hut, and H. M. Cooper (2007)
J. Neurosci. 27, 9623-9631
   Abstract »    Full Text »    PDF »
Synaptic Contact between Melanopsin-Containing Retinal Ganglion Cells and Rod Bipolar Cells.
J. Ostergaard, J. Hannibal, and J. Fahrenkrug (2007)
Invest. Ophthalmol. Vis. Sci. 48, 3812-3820
   Abstract »    Full Text »    PDF »
Synaptic influences on rat ganglion-cell photoreceptors.
K. Y. Wong, F. A. Dunn, D. M. Graham, and D. M. Berson (2007)
J. Physiol. 582, 279-296
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Circadian Photoreception in Vertebrates.
S. Doyle and M. Menaker (2007)
Cold Spring Harb Symp Quant Biol 72, 499-508
   Abstract »    PDF »
Multiple Photoreceptors Contribute to Nonimage-forming Visual Functions Predominantly through Melanopsin-containing Retinal Ganglion Cells.
A.D. Guler, C.M. Altimus, J.L. Ecker, and S. Hattar (2007)
Cold Spring Harb Symp Quant Biol 72, 509-515
   Abstract »    PDF »
Sleep and Circadian Rhythms in Humans.
C. A. Czeisler and J. J. Gooley (2007)
Cold Spring Harb Symp Quant Biol 72, 579-597
   Abstract »    PDF »
Diversity of zebrafish peripheral oscillators revealed by luciferase reporting.
M. Kaneko, N. Hernandez-Borsetti, and G. M. Cahill (2006)
PNAS 103, 14614-14619
   Abstract »    Full Text »    PDF »
Monoamine oxidase A knockout mice exhibit impaired nicotine preference but normal responses to novel stimuli.
S. Agatsuma, M. Lee, H. Zhu, K. Chen, J. C. Shih, I. Seif, and N. Hiroi (2006)
Hum. Mol. Genet. 15, 2721-2731
   Abstract »    Full Text »    PDF »
DARPP-32 Involvement in the Photic Pathway of the Circadian System.
L. Yan, J. M. Bobula, P. Svenningsson, P. Greengard, and R. Silver (2006)
J. Neurosci. 26, 9434-9438
   Abstract »    Full Text »    PDF »
Chromophore regeneration: Melanopsin does its own thing.
R. J. Lucas (2006)
PNAS 103, 10153-10154
   Full Text »    PDF »
Inner retinal photoreception independent of the visual retinoid cycle.
D. C. Tu, L. A. Owens, L. Anderson, M. Golczak, S. E. Doyle, M. McCall, M. Menaker, K. Palczewski, and R. N. Van Gelder (2006)
PNAS 103, 10426-10431
   Abstract »    Full Text »    PDF »
Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system.
S. E. Doyle, A. M. Castrucci, M. McCall, I. Provencio, and M. Menaker (2006)
PNAS 103, 10432-10437
   Abstract »    Full Text »    PDF »
Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model..
R. S. Li, B.-Y. Chen, D. K. Tay, H. H. L. Chan, M.-L. Pu, and K.-F. So (2006)
Invest. Ophthalmol. Vis. Sci. 47, 2951-2958
   Abstract »    Full Text »    PDF »
Immunohistochemical evidence of a melanopsin cone in human retina..
O. Dkhissi-Benyahya, C. Rieux, R. A. Hut, and H. M. Cooper (2006)
Invest. Ophthalmol. Vis. Sci. 47, 1636-1641
   Abstract »    Full Text »    PDF »
Impact of behavior on central and peripheral circadian clocks in the common vole Microtus arvalis, a mammal with ultradian rhythms.
D. R. van der Veen, N. L. Minh, P. Gos, M. Arneric, M. P. Gerkema, and U. Schibler (2006)
PNAS 103, 3393-3398
   Abstract »    Full Text »    PDF »
Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
Y. Fu, H. Zhong, M.-H. H. Wang, D.-G. Luo, H.-W. Liao, H. Maeda, S. Hattar, L. J. Frishman, and K.-W. Yau (2005)
PNAS 102, 10339-10344
   Abstract »    Full Text »    PDF »
Illumination of the Melanopsin Signaling Pathway.
S. Panda, S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch, and T. Jegla (2005)
Science 307, 600-604
   Abstract »    Full Text »    PDF »
Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin.
M. C. Isoldi, M. D. Rollag, A. M. d. L. Castrucci, and I. Provencio (2005)
PNAS 102, 1217-1221
   Abstract »    Full Text »    PDF »
Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice.
C. L. Thompson, C. P. Selby, R. N. Van Gelder, W. S. Blaner, J. Lee, L. Quadro, K. Lai, M. E. Gottesman, and A. Sancar (2004)
J Biol Rhythms 19, 504-517
   Abstract »    PDF »
Multipotent Retinal Progenitors Express Developmental Markers, Differentiate into Retinal Neurons, and Preserve Light-Mediated Behavior.
H. J. Klassen, T. F. Ng, Y. Kurimoto, I. Kirov, M. Shatos, P. Coffey, and M. J. Young (2004)
Invest. Ophthalmol. Vis. Sci. 45, 4167-4173
   Abstract »    Full Text »    PDF »
Melanopsin Is Expressed in PACAP-Containing Retinal Ganglion Cells of the Human Retinohypothalamic Tract.
J. Hannibal, P. Hindersson, J. Ostergaard, B. Georg, S. Heegaard, P. J. Larsen, and J. Fahrenkrug (2004)
Invest. Ophthalmol. Vis. Sci. 45, 4202-4209
   Abstract »    Full Text »    PDF »
Selective deficits in the circadian light response in mice lacking PACAP.
C. S. Colwell, S. Michel, J. Itri, W. Rodriguez, J. Tam, V. Lelievre, Z. Hu, and J. A. Waschek (2004)
Am J Physiol Regulatory Integrative Comp Physiol 287, R1194-R1201
   Abstract »    Full Text »    PDF »
Classical Photoreceptors Regulate Melanopsin mRNA Levels in the Rat Retina.
K. Sakamoto, C. Liu, and G. Tosini (2004)
J. Neurosci. 24, 9693-9697
   Abstract »    Full Text »    PDF »
Finding New Clock Components: Past and Future.
J. S. Takahashi (2004)
J Biol Rhythms 19, 339-347
   Abstract »    PDF »
Clock Gene Evolution and Functional Divergence.
E. Tauber, K. S. Last, P. J.W. Olive, and C. P. Kyriacou (2004)
J Biol Rhythms 19, 445-458
   Abstract »    PDF »
Nonvisual Photoreception in the Chick Iris.
D. C. Tu, M. L. Batten, K. Palczewski, and R. N. Van Gelder (2004)
Science 306, 129-131
   Abstract »    Full Text »    PDF »
Blue light and the circadian clock.
R N Van Gelder and M A Mainster (2004)
Br J Ophthalmol 88, 1353
   Full Text »    PDF »
Regulation of the Mammalian Circadian Clock by Cryptochrome.
A. Sancar (2004)
J. Biol. Chem. 279, 34079-34082
   Full Text »    PDF »
Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans.
C. Gronfier, K. P. Wright Jr., R. E. Kronauer, M. E. Jewett, and C. A. Czeisler (2004)
Am J Physiol Endocrinol Metab 287, E174-E181
   Abstract »    Full Text »    PDF »
Retinal Circadian Clocks and Control of Retinal Physiology.
C. B. Green and J. C. Besharse (2004)
J Biol Rhythms 19, 91-102
   Abstract »    PDF »
Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver.
M. L. Batten, Y. Imanishi, T. Maeda, D. C. Tu, A. R. Moise, D. Bronson, D. Possin, R. N. Van Gelder, W. Baehr, and K. Palczewski (2004)
J. Biol. Chem. 279, 10422-10432
   Abstract »    Full Text »    PDF »
Opsin Photoisomerases in the Chick Retina and Pineal Gland: Characterization, Localization, and Circadian Regulation.
M. J. Bailey and V. M. Cassone (2004)
Invest. Ophthalmol. Vis. Sci. 45, 769-775
   Abstract »    Full Text »    PDF »
Clean Thoughts about Dirty Genes.
R. N. van Gelder and J. B. Hogenesch (2004)
J Biol Rhythms 19, 3-9
   Abstract »    PDF »
Nocturnal Activity in a Diurnal Rodent (Arvicanthis Niloticus): The Importance of Masking.
U. Redlin and N. Mrosovsky (2004)
J Biol Rhythms 19, 58-67
   Abstract »    PDF »
Phenotype Matters: Identification of Light-Responsive Cells in the Mouse Suprachiasmatic Nucleus.
I. N. Karatsoreos, L. Yan, J. LeSauter, and R. Silver (2004)
J. Neurosci. 24, 68-75
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Mammalian Circadian Clock.
Y. Isojima, N. Okumura, and K. Nagai (2003)
J. Biochem. 134, 777-784
   Abstract »    Full Text »    PDF »
Chicktacking Pineal Clock.
T. Okano and Y. Fukada (2003)
J. Biochem. 134, 791-797
   Abstract »    Full Text »    PDF »
Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry.
S. He, W. Dong, Q. Deng, S. Weng, and W. Sun (2003)
Science 302, 408-411
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882