Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 301 (5634): 836-838

Copyright © 2003 by the American Association for the Advancement of Science

Single Molecule Profiling of Alternative Pre-mRNA Splicing

Jun Zhu,1* Jay Shendure,1* Robi D. Mitra,2 George M. Church1{dagger}

Abstract: Alternative pre-messenger RNA splicing is an important mechanism for generating protein diversity and may explain in part how mammalian complexity arises from a surprisingly small complement of genes. Here, we describe "digital polony exon profiling,"a single molecule–based technology for studying complex alternative pre-messenger RNA splicing. This technology allows researchers to monitor the combinatorial diversity of exon inclusion in individual transcripts. A minisequencing strategy provides single nucleotide resolution, and the digital nature of the technology allows quantitation of individual splicing variants. Digital polony exon profiling can be used to investigate the physiological and pathological roles of alternately spliced messenger RNAs, as well as the mechanisms by which these messenger RNAs are produced.

1 Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
2 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: church{at}arep.med.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Intron-derived aberrant splicing of A20 transcript in rheumatoid arthritis.
H. K. Yoon, H. S. Byun, H. Lee, J. Jeon, Y. Lee, Y. Li, E.-H. Jin, J. Kim, J. H. Hong, J. H. Kim, et al. (2013)
Rheumatology 52, 427-437
   Abstract »    Full Text »    PDF »
Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing.
M. A. Hossain, C. M. Rodriguez, and T. L. Johnson (2011)
Nucleic Acids Res. 39, 8612-8627
   Abstract »    Full Text »    PDF »
Single molecule analysis of combinatorial splicing.
T. Conze, J. Goransson, H. R. Razzaghian, O. Ericsson, D. Oberg, G. Akusjarvi, U. Landegren, and M. Nilsson (2010)
Nucleic Acids Res. 38, e163
   Abstract »    Full Text »    PDF »
Stochastic noise in splicing machinery.
E. Melamud and J. Moult (2009)
Nucleic Acids Res. 37, 4873-4886
   Abstract »    Full Text »    PDF »
Genome-wide Analysis of Alternative Pre-mRNA Splicing.
C. Ben-Dov, B. Hartmann, J. Lundgren, and J. Valcarcel (2008)
J. Biol. Chem. 283, 1229-1233
   Abstract »    Full Text »    PDF »
Polony analysis of gene expression in ES cells and blastocysts.
C. Rieger, R. Poppino, R. Sheridan, K. Moley, R. Mitra, and D. Gottlieb (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Multisite and bidirectional exonic splicing enhancer in CD44 alternative exon v3.
E. Vela, J. M. Hilari, X. Roca, A. M. Munoz-Marmol, A. Ariza, and M. Isamat (2007)
RNA 13, 2312-2323
   Abstract »    Full Text »    PDF »
Identification of Differentially Regulated Splice Variants and Novel Exons in Glial Brain Tumors Using Exon Expression Arrays.
P. J. French, J. Peeters, S. Horsman, E. Duijm, I. Siccama, M. J. van den Bent, T. M. Luider, J. M. Kros, P. van der Spek, and P. A. Sillevis Smitt (2007)
Cancer Res. 67, 5635-5642
   Abstract »    Full Text »    PDF »
An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs.
Y. Xing, T. Yu, Y. N. Wu, M. Roy, J. Kim, and C. Lee (2006)
Nucleic Acids Res. 34, 3150-3160
   Abstract »    Full Text »    PDF »
Detection of Alternatively Spliced Transcripts in Leukemia Cell Lines by Minisequencing on Microarrays.
L. Milani, M. Fredriksson, and A.-C. Syvanen (2006)
Clin. Chem. 52, 202-211
   Abstract »    Full Text »    PDF »
Regulation of CD44 Alternative Splicing by SRm160 and Its Potential Role in Tumor Cell Invasion.
C. Cheng and P. A. Sharp (2006)
Mol. Cell. Biol. 26, 362-370
   Abstract »    Full Text »    PDF »
Expressible molecular colonies.
T. R. Samatov, H. V. Chetverina, and A. B. Chetverin (2005)
Nucleic Acids Res. 33, e145
   Abstract »    Full Text »    PDF »
High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
R. M. McCullough, C. R. Cantor, and C. Ding (2005)
Nucleic Acids Res. 33, e99
   Abstract »    Full Text »    PDF »
Identification of human exons overexpressed in tumors through the use of genome and expressed sequence data.
N. Kirschbaum-Slager, R. B. Parmigiani, A. A. Camargo, and S. J. de Souza (2005)
Physiol Genomics 21, 423-432
   Abstract »    Full Text »    PDF »
Alternative Promoters Determine Tissue-Specific Expression Profiles of the Human Microsomal Epoxide Hydrolase Gene (EPHX1).
S.-H. Liang, C. Hassett, and C. J. Omiecinski (2005)
Mol. Pharmacol. 67, 220-230
   Abstract »    Full Text »    PDF »
A survey of splice variants of the human hypoxanthine phosphoribosyl transferase and DNA polymerase beta genes: products of alternative or aberrant splicing?.
A. Skandalis and E. Uribe (2004)
Nucleic Acids Res. 32, 6557-6564
   Abstract »    Full Text »    PDF »
Genome-wide Analysis of Pre-mRNA Splicing: INTRON FEATURES GOVERN THE REQUIREMENT FOR THE SECOND-STEP FACTOR, Prp17 IN SACCHAROMYCES CEREVISIAE AND SCHIZOSACCHAROMYCES POMBE.
A. K. Sapra, Y. Arava, P. Khandelia, and U. Vijayraghavan (2004)
J. Biol. Chem. 279, 52437-52446
   Abstract »    Full Text »    PDF »
A systems view of mRNP biology.
H. Hieronymus and P. A. Silver (2004)
Genes & Dev. 18, 2845-2860
   Abstract »    Full Text »    PDF »
Recent Origin of a Hominoid-Specific Splice Form of Neuropsin, a Gene Involved in Learning and Memory.
Y. Li, Y.-p. Qian, X.-j. Yu, Y.-q. Wang, D.-g. Dong, W. Sun, R.-m. Ma, and B. Su (2004)
Mol. Biol. Evol. 21, 2111-2115
   Abstract »    Full Text »    PDF »
Methods for Transcriptional Profiling in Plants. Be Fruitful and Replicate.
B. C. Meyers, D. W. Galbraith, T. Nelson, and V. Agrawal (2004)
Plant Physiology 135, 637-652
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882