Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 301 (5636): 1107-1110

Copyright © 2003 by the American Association for the Advancement of Science

SIR1, an Upstream Component in Auxin Signaling Identified by Chemical Genetics

Yunde Zhao,1* Xinhua Dai,1 Helen E. Blackwell,2{dagger} Stuart L. Schreiber,2 Joanne Chory3

Abstract: Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1–like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.

1 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093–0116, USA.
2 Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute (HHMI), Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
3 The Plant Biology Laboratory, HHMI and The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

Back to Top

{dagger} Present address: Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706–1396, USA.

* To whom correspondence should be addressed. E-mail: yzhao{at}biomail.ucsd.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
NAD+ Accumulation during Pollen Maturation in Arabidopsis Regulating Onset of Germination.
S.-n. Hashida, H. Takahashi, K. Takahara, M. Kawai-Yamada, K. Kitazaki, K. Shoji, F. Goto, T. Yoshihara, and H. Uchimiya (2013)
Mol Plant 6, 216-225
   Abstract »    Full Text »    PDF »
The Expanding Universe of Ubiquitin and Ubiquitin-Like Modifiers.
R. D. Vierstra (2012)
Plant Physiology 160, 2-14
   Full Text »    PDF »
Arabidopsis Molybdopterin Biosynthesis Protein Cnx5 Collaborates with the Ubiquitin-like Protein Urm11 in the Thio-modification of tRNA.
Y. Nakai, A. Harada, Y. Hashiguchi, M. Nakai, and H. Hayashi (2012)
J. Biol. Chem. 287, 30874-30884
   Abstract »    Full Text »    PDF »
Linking photoreceptor excitation to changes in plant architecture.
L. Li, K. Ljung, G. Breton, R. J. Schmitz, J. Pruneda-Paz, C. Cowing-Zitron, B. J. Cole, L. J. Ivans, U. V. Pedmale, H.-S. Jung, et al. (2012)
Genes & Dev. 26, 785-790
   Abstract »    Full Text »    PDF »
Sulfurtransferases 1 and 2 Play Essential Roles in Embryo and Seed Development in Arabidopsis thaliana.
G. Mao, R. Wang, Y. Guan, Y. Liu, and S. Zhang (2011)
J. Biol. Chem. 286, 7548-7557
   Abstract »    Full Text »    PDF »
Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics.
J.-Y. Kim, S. Henrichs, A. Bailly, V. Vincenzetti, V. Sovero, S. Mancuso, S. Pollmann, D. Kim, M. Geisler, and H.-G. Nam (2010)
J. Biol. Chem. 285, 23309-23317
   Abstract »    Full Text »    PDF »
A Novel Role for Arabidopsis Mitochondrial ABC Transporter ATM3 in Molybdenum Cofactor Biosynthesis.
J. Teschner, N. Lachmann, J. Schulze, M. Geisler, K. Selbach, J. Santamaria-Araujo, J. Balk, R. R. Mendel, and F. Bittner (2010)
PLANT CELL 22, 468-480
   Abstract »    Full Text »    PDF »
An Allelic Mutant Series of ATM3 Reveals Its Key Role in the Biogenesis of Cytosolic Iron-Sulfur Proteins in Arabidopsis.
D. G. Bernard, Y. Cheng, Y. Zhao, and J. Balk (2009)
Plant Physiology 151, 590-602
   Abstract »    Full Text »    PDF »
Identification and Preliminary Characterization of a New Chemical Affecting Glucosyltransferase Activities Involved in Plant Cell Wall Biosynthesis.
O. Zabotina, E. Malm, G. Drakakaki, V. Bulone, and N. Raikhel (2008)
Mol Plant 1, 977-989
   Abstract »    Full Text »    PDF »
Chemical Genetic Dissection of Brassinosteroid-Ethylene Interaction.
J. M. Gendron, A. Haque, N. Gendron, T. Chang, T. Asami, and Z.-Y. Wang (2008)
Mol Plant 1, 368-379
   Abstract »    Full Text »    PDF »
Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis.
I. A. Paponov, M. Paponov, W. Teale, M. Menges, S. Chakrabortee, J. A.H. Murray, and K. Palme (2008)
Mol Plant 1, 321-337
   Abstract »    Full Text »    PDF »
CSR1, the Sole Target of Imidazolinone Herbicide in Arabidopsis thaliana.
Y. Manabe, N. Tinker, A. Colville, and B. Miki (2007)
Plant Cell Physiol. 48, 1340-1358
   Abstract »    Full Text »    PDF »
Chemical Genetic Identification of Glutamine Phosphoribosylpyrophosphate Amidotransferase as the Target for a Novel Bleaching Herbicide in Arabidopsis.
T. A. Walsh, T. Bauer, R. Neal, A. O. Merlo, P. R. Schmitzer, G. R. Hicks, M. Honma, W. Matsumura, K. Wolff, and J. P. Davies (2007)
Plant Physiology 144, 1292-1304
   Abstract »    Full Text »    PDF »
Chemical Interference of Pathogen-associated Molecular Pattern-triggered Immune Responses in Arabidopsis Reveals a Potential Role for Fatty-acid Synthase Type II Complex-derived Lipid Signals.
M. Serrano, S. Robatzek, M. Torres, E. Kombrink, I. E. Somssich, M. Robinson, and P. Schulze-Lefert (2007)
J. Biol. Chem. 282, 6803-6811
   Abstract »    Full Text »    PDF »
A New CULLIN 1 Mutant Has Altered Responses to Hormones and Light in Arabidopsis.
J. Moon, Y. Zhao, X. Dai, W. Zhang, W. M. Gray, E. Huq, and M. Estelle (2007)
Plant Physiology 143, 684-696
   Abstract »    Full Text »    PDF »
Mutations in an Auxin Receptor Homolog AFB5 and in SGT1b Confer Resistance to Synthetic Picolinate Auxins and Not to 2,4-Dichlorophenoxyacetic Acid or Indole-3-Acetic Acid in Arabidopsis.
T. A. Walsh, R. Neal, A. O. Merlo, M. Honma, G. R. Hicks, K. Wolff, W. Matsumura, and J. P. Davies (2006)
Plant Physiology 142, 542-552
   Abstract »    Full Text »    PDF »
Bestatin, an Inhibitor of Aminopeptidases, Provides a Chemical Genetics Approach to Dissect Jasmonate Signaling in Arabidopsis.
W. Zheng, Q. Zhai, J. Sun, C.-B. Li, L. Zhang, H. Li, X. Zhang, S. Li, Y. Xu, H. Jiang, et al. (2006)
Plant Physiology 141, 1400-1413
   Abstract »    Full Text »    PDF »
A Role for Auxin Response Factor 19 in Auxin and Ethylene Signaling in Arabidopsis.
J. Li, X. Dai, and Y. Zhao (2006)
Plant Physiology 140, 899-908
   Abstract »    Full Text »    PDF »
A gradient of auxin and auxin-dependent transcription precedes tropic growth responses.
C. A. Esmon, A. G. Tinsley, K. Ljung, G. Sandberg, L. B. Hearne, and E. Liscum (2006)
PNAS 103, 236-241
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development.
C. Sorin, L. Negroni, T. Balliau, H. Corti, M.-P. Jacquemot, M. Davanture, G. Sandberg, M. Zivy, and C. Bellini (2006)
Plant Physiology 140, 349-364
   Abstract »    Full Text »    PDF »
A Mutation in the Anticodon of a Single tRNAala Is Sufficient to Confer Auxin Resistance in Arabidopsis.
J. Perry, X. Dai, and Y. Zhao (2005)
Plant Physiology 139, 1284-1290
   Abstract »    Full Text »    PDF »
Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression.
A. Vieten, S. Vanneste, J. Wisniewska, E. Benkova, R. Benjamins, T. Beeckman, C. Luschnig, and J. Friml (2005)
Development 132, 4521-4531
   Abstract »    Full Text »    PDF »
Surge and destroy: the role of auxin in plant embryogenesis.
P. D. Jenik and M. K. Barton (2005)
Development 132, 3577-3585
   Abstract »    Full Text »    PDF »
ChemMine. A Compound Mining Database for Chemical Genomics.
T. Girke, L.-C. Cheng, and N. Raikhel (2005)
Plant Physiology 138, 573-577
   Full Text »    PDF »
The discovery and mechanism of action of novel tumor-selective and apoptosis-inducing 3,5-diaryl-1,2,4-oxadiazole series using a chemical genetics approach.
K. A. Jessen, N. M. English, J. Yu Wang, S. Maliartchouk, S. P. Archer, L. Qiu, R. Brand, J. Kuemmerle, H.-Z. Zhang, K. Gehlsen, et al. (2005)
Mol. Cancer Ther. 4, 761-771
   Abstract »    Full Text »    PDF »
Auxin: Regulation, Action, and Interaction.
A. W. WOODWARD and B. BARTEL (2005)
Ann. Bot. 95, 707-735
   Abstract »    Full Text »    PDF »
Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis.
X. Dai, K.-i. Hayashi, H. Nozaki, Y. Cheng, and Y. Zhao (2005)
PNAS 102, 3129-3134
   Abstract »    Full Text »    PDF »
Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid.
P. E. Staswick, B. Serban, M. Rowe, I. Tiryaki, M. T. Maldonado, M. C. Maldonado, and W. Suza (2005)
PLANT CELL 17, 616-627
   Abstract »    Full Text »    PDF »
Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Development.
M. J. Prigge, D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drews, and S. E. Clark (2005)
PLANT CELL 17, 61-76
   Abstract »    Full Text »    PDF »
Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis.
J. I. Armstrong, S. Yuan, J. M. Dale, V. N. Tanner, and A. Theologis (2004)
PNAS 101, 14978-14983
   Abstract »    Full Text »    PDF »
Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex.
S. Kepinski and O. Leyser (2004)
PNAS 101, 12381-12386
   Abstract »    Full Text »    PDF »
A Novel Inhibitor of 9-cis-Epoxycarotenoid Dioxygenase in Abscisic Acid Biosynthesis in Higher Plants.
S.-Y. Han, N. Kitahata, K. Sekimata, T. Saito, M. Kobayashi, K. Nakashima, K. Yamaguchi-Shinozaki, K. Shinozaki, S. Yoshida, and T. Asami (2004)
Plant Physiology 135, 1574-1582
   Abstract »    Full Text »    PDF »
Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis.
J. Zouhar, G. R. Hicks, and N. V. Raikhel (2004)
PNAS 101, 9497-9501
   Abstract »    Full Text »    PDF »
AtCAND1, A HEAT-Repeat Protein That Participates in Auxin Signaling in Arabidopsis.
Y. Cheng, X. Dai, and Y. Zhao (2004)
Plant Physiology 135, 1020-1026
   Abstract »    Full Text »    PDF »
Immunophilins and Parvulins. Superfamily of Peptidyl Prolyl Isomerases in Arabidopsis.
Z. He, L. Li, and S. Luan (2004)
Plant Physiology 134, 1248-1267
   Abstract »    Full Text »    PDF »
Plant Hormone Binding Sites.
R. NAPIER (2004)
Ann. Bot. 93, 227-233
   Abstract »    Full Text »    PDF »
MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana.
K. Tatematsu, S. Kumagai, H. Muto, A. Sato, M. K. Watahiki, R. M. Harper, E. Liscum, and K. T. Yamamoto (2004)
PLANT CELL 16, 379-393
   Abstract »    Full Text »    PDF »
Chemical Genetic Approaches to Plant Biology.
H. E. Blackwell and Y. Zhao (2003)
Plant Physiology 133, 448-455
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882