Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 301 (5639): 1527-1530

Copyright © 2003 by the American Association for the Advancement of Science

Use of Genetic Profiling in Leprosy to Discriminate Clinical Forms of the Disease

Joshua R. Bleharski,1,2* Huiying Li,3* Christoph Meinken,4* Thomas G. Graeber,3* Maria-Teresa Ochoa,2 Masahiro Yamamura,5 Anne Burdick,6 Euzenir N. Sarno,7 Manfred Wagner,8 Martin Röllinghoff,4 Thomas H. Rea,9 Marco Colonna,10 Steffen Stenger,4 Barry R. Bloom,11 David Eisenberg,3 Robert L. Modlin1,2{ddagger}

Abstract: Leprosy presents as a clinical and immunological spectrum of disease. With the use of gene expression profiling, we observed that a distinction in gene expression correlates with and accurately classifies the clinical form of the disease. Genes belonging to the leukocyte immunoglobulin-like receptor (LIR) family were significantly up-regulated in lesions of lepromatous patients suffering from the disseminated form of the infection. In functional studies, LIR-7 suppressed innate host defense mechanisms by shifting monocyte production from interleukin-12 toward interleukin-10 and by blocking antimicrobial activity triggered by Toll-like receptors. Gene expression profiles may be useful in defining clinical forms of disease and providing insights into the regulation of immune responses to pathogens.

1 Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
2 Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
3 Department of Chemistry and Biochemistry and Department of Biological Chemistry, Howard Hughes Medical Institute, UCLA–Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.
4 Institut für Klinische Mikrobiologie, Immunologie, und Hygiene, Universität Erlangen, 91054 Erlangen, Germany.
5 Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
6 Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, FL33101, USA.
7 Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil.
8 Medizinische Klinik 3, Klinikum Nürnberg, 90340 Nürnberg, Germany.
9 Section of Dermatology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA.
10 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
11 Office of the Dean, Harvard School of Public Health, Boston, MA 02115, USA.

Back to Top

* These authors contributed equally to this work.

{ddagger} To whom correspondence should be addressed. E-mail: rmodlin{at}

Type I Interferon Suppresses Type II Interferon-Triggered Human Anti-Mycobacterial Responses.
R. M. B. Teles, T. G. Graeber, S. R. Krutzik, D. Montoya, M. Schenk, D. J. Lee, E. Komisopoulou, K. Kelly-Scumpia, R. Chun, S. S. Iyer, et al. (2013)
Science 339, 1448-1453
   Abstract »    Full Text »    PDF »
Galectin-3 Regulates the Innate Immune Response of Human Monocytes.
A. W. Chung, P. A. Sieling, M. Schenk, R. M. B. Teles, S. R. Krutzik, D. K. Hsu, F.-T. Liu, E. N. Sarno, T. H. Rea, S. Stenger, et al. (2013)
The Journal of Infectious Disease 207, 947-956
   Abstract »    Full Text »    PDF »
TLR6-Driven Lipid Droplets in Mycobacterium leprae-Infected Schwann Cells: Immunoinflammatory Platforms Associated with Bacterial Persistence.
K. A. Mattos, V. G. C. Oliveira, H. D'Avila, L. S. Rodrigues, R. O. Pinheiro, E. N. Sarno, M. C. V. Pessolani, and P. T. Bozza (2011)
J. Immunol. 187, 2548-2558
   Abstract »    Full Text »    PDF »
Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis.
K. A. Mattos, H. D'Avila, L. S. Rodrigues, V. G. C. Oliveira, E. N. Sarno, G. C. Atella, G. M. Pereira, P. T. Bozza, and M. C. V. Pessolani (2010)
J. Leukoc. Biol. 87, 371-384
   Abstract »    Full Text »    PDF »
Integrated Pathways for Neutrophil Recruitment and Inflammation in Leprosy.
D. J. Lee, H. Li, M. T. Ochoa, M. Tanaka, R. J. Carbone, R. Damoiseaux, A. Burdick, E. N. Sarno, T. H. Rea, and R. L. Modlin (2010)
The Journal of Infectious Disease 201, 558-569
   Abstract »    Full Text »    PDF »
Mycobacterium leprae Actively Modulates the Cytokine Response in Naive Human Monocytes.
D. Sinsimer, D. Fallows, B. Peixoto, J. Krahenbuhl, G. Kaplan, and C. Manca (2010)
Infect. Immun. 78, 293-300
   Abstract »    Full Text »    PDF »
Macrophage fusion cuisine.
A. Sica and A. Mantovani (2009)
Blood 114, 4609-4610
   Full Text »    PDF »
Macrophage Polarization in Bacterial Infections.
M. Benoit, B. Desnues, and J.-L. Mege (2008)
J. Immunol. 181, 3733-3739
   Abstract »    Full Text »    PDF »
The Functional State of the Complement System in Leprosy.
G. I. Gomes, E. P. Nahn Jr., R. K. R. G. Santos, W. D. Da Silva, and T. L. Kipnis (2008)
Am J Trop Med Hyg 78, 605-610
   Abstract »    Full Text »    PDF »
Differential expression of leukocyte immunoglobulin-like receptors on cord blood-derived human mast cell progenitors and mature mast cells.
N. Tedla, C.-W. Lee, L. Borges, C. L. Geczy, and J. P. Arm (2008)
J. Leukoc. Biol. 83, 334-343
   Abstract »    Full Text »    PDF »
LILRA2 Activation Inhibits Dendritic Cell Differentiation and Antigen Presentation to T Cells.
D. J. Lee, P. A. Sieling, M. T. Ochoa, S. R. Krutzik, B. Guo, M. Hernandez, T. H. Rea, G. Cheng, M. Colonna, and R. L. Modlin (2007)
J. Immunol. 179, 8128-8136
   Abstract »    Full Text »    PDF »
Dysregulated Immune Profiles for Skin and Dendritic Cells Are Associated with Increased Host Susceptibility to Haemophilus ducreyi Infection in Human Volunteers.
T. L. Humphreys, L. Li, X. Li, D. M. Janowicz, K. R. Fortney, Q. Zhao, W. Li, J. McClintick, B. P. Katz, D. S. Wilkes, et al. (2007)
Infect. Immun. 75, 5686-5697
   Abstract »    Full Text »    PDF »
Gene-Expression Patterns in Whole Blood Identify Subjects at Risk for Recurrent Tuberculosis.
R. Mistry, J. M. Cliff, C. L. Clayton, N. Beyers, Y. S. Mohamed, P. A. Wilson, H. M. Dockrell, D. M. Wallace, P. D. van Helden, K. Duncan, et al. (2007)
The Journal of Infectious Disease 195, 357-365
   Abstract »    Full Text »    PDF »
IL-10 Deficiency Promotes Increased Borrelia burgdorferi Clearance Predominantly through Enhanced Innate Immune Responses.
J. J. Lazarus, M. J. Meadows, R. E. Lintner, and R. M. Wooten (2006)
J. Immunol. 177, 7076-7085
   Abstract »    Full Text »    PDF »
NF-{kappa}B1 (p50) Homodimers Differentially Regulate Pro- and Anti-inflammatory Cytokines in Macrophages.
S. Cao, X. Zhang, J. P. Edwards, and D. M. Mosser (2006)
J. Biol. Chem. 281, 26041-26050
   Abstract »    Full Text »    PDF »
Crystal Structure of the Human Monocyte-activating Receptor, "Group 2" Leukocyte Ig-like Receptor A5 (LILRA5/LIR9/ILT11).
M. Shiroishi, M. Kajikawa, K. Kuroki, T. Ose, D. Kohda, and K. Maenaka (2006)
J. Biol. Chem. 281, 19536-19544
   Abstract »    Full Text »    PDF »
Toxicogenomics in Risk Assessment: Applications and Needs.
D. R. Boverhof and T. R. Zacharewski (2006)
Toxicol. Sci. 89, 352-360
   Abstract »    Full Text »    PDF »
Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44.
A. Fuchs, M. Cella, T. Kondo, and M. Colonna (2005)
Blood 106, 2076-2082
   Abstract »    Full Text »    PDF »
Extensive polymorphisms of LILRB1 (ILT2, LIR1) and their association with HLA-DRB1 shared epitope negative rheumatoid arthritis.
K. Kuroki, N. Tsuchiya, M. Shiroishi, L. Rasubala, Y. Yamashita, K. Matsuta, T. Fukazawa, M. Kusaoi, Y. Murakami, M. Takiguchi, et al. (2005)
Hum. Mol. Genet. 14, 2469-2480
   Abstract »    Full Text »    PDF »
Polymorphism of the 5' flanking region of the IL-12 receptor {beta}2 gene partially determines the clinical types of leprosy through impaired transcriptional activity.
H Ohyama, K Ogata, K Takeuchi, M Namisato, Y Fukutomi, F Nishimura, H Naruishi, T Ohira, K Hashimoto, T Liu, et al. (2005)
J. Clin. Pathol. 58, 740-743
   Abstract »    Full Text »    PDF »
A role for IgG immune complexes during infection with the intracellular pathogen Leishmania.
S. A. Miles, S. M. Conrad, R. G. Alves, S. M.B. Jeronimo, and D. M. Mosser (2005)
J. Exp. Med. 201, 747-754
   Abstract »    Full Text »    PDF »
Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition.
D. E. Sloane, N. Tedla, M. Awoniyi, D. W. MacGlashan Jr, L. Borges, K. F. Austen, and J. P. Arm (2004)
Blood 104, 2832-2839
   Abstract »    Full Text »    PDF »
Genetic Understanding of the Two Forms of Leprosy.
Journal Watch Infectious Diseases 2003, 13
   Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882