Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 302 (5643): 255-259

Copyright © 2003 by the American Association for the Advancement of Science

Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo

Takuya Matsuo,1,2* Shun Yamaguchi,1* Shigeru Mitsui,1 Aki Emi,1 Fukuko Shimoda,1 Hitoshi Okamura1{dagger}

Abstract: Cell division in many mammalian tissues is associated with specific times of day, but just how the circadian clock controls this timing has not been clear. Here, we show in the regenerating liver (of mice) that the circadian clock controls the expression of cell cycle–related genes that in turn modulate the expression of active Cyclin B1-Cdc2 kinase, a key regulator of mitosis. Among these genes, expression of wee1 was directly regulated by the molecular components of the circadian clockwork. In contrast, the circadian clockwork oscillated independently of the cell cycle in single cells. Thus, the intracellular circadian clockwork can control the cell-division cycle directly and unidirectionally in proliferating cells.

1 Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650–0017, Japan.
2 Department of Physics, Informatics and Biology, Yamaguchi University, Yamaguchi 753–8512, Japan.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: okamurah{at}kobe-u.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor.
N. C. Gossan, F. Zhang, B. Guo, D. Jin, H. Yoshitane, A. Yao, N. Glossop, Y. Q. Zhang, Y. Fukada, and Q.-J. Meng (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1.
T.-H. Kang and S.-H. Leem (2014)
Nucleic Acids Res. 42, 4427-4434
   Abstract »    Full Text »    PDF »
Overexpression of the Circadian Clock Gene Bmal1 Increases Sensitivity to Oxaliplatin in Colorectal Cancer.
Z.-l. Zeng, H.-y. Luo, J. Yang, W.-j. Wu, D.-l. Chen, P. Huang, and R.-h. Xu (2014)
Clin. Cancer Res. 20, 1042-1052
   Abstract »    Full Text »    PDF »
Circadian rhythms synchronize mitosis in Neurospora crassa.
C. I. Hong, J. Zamborszky, M. Baek, L. Labiscsak, K. Ju, H. Lee, L. F. Larrondo, A. Goity, H. S. Chong, W. J. Belden, et al. (2014)
PNAS 111, 1397-1402
   Abstract »    Full Text »    PDF »
Circadian Rhythms in Cell Maturation.
B. C. Du Pre, T. A. B. Van Veen, M. E. Young, M. A. Vos, P. A. Doevendans, and L. W. Van Laake (2014)
Physiology 29, 72-83
   Abstract »    Full Text »    PDF »
Comparison of acute skin reaction following morning versus late afternoon radiotherapy in patients with breast cancer who have undergone curative surgical resection.
J. M. Noh, D. H. Choi, H. Park, S. J. Huh, W. Park, S. W. Seol, B. K. Jeong, S. J. Nam, J. E. Lee, and W.-H. Kil (2014)
J Radiat Res
   Abstract »    Full Text »    PDF »
A Circadian Clock Transcription Model for the Personalization of Cancer Chronotherapy.
X.-M. Li, A. Mohammad-Djafari, M. Dumitru, S. Dulong, E. Filipski, S. Siffroi-Fernandez, A. Mteyrek, F. Scaglione, C. Guettier, F. Delaunay, et al. (2013)
Cancer Res. 73, 7176-7188
   Abstract »    Full Text »    PDF »
Involvement of Wee1 in the Circadian Rhythm-Dependent Intestinal Damage Induced by Docetaxel.
Y. Obi-Ioka, K. Ushijima, M. Kusama, E. Ishikawa-Kobayashi, and A. Fujimura (2013)
J. Pharmacol. Exp. Ther. 347, 242-248
   Abstract »    Full Text »    PDF »
Evolutionary Links Between Circadian Clocks and Photoperiodic Diapause in Insects.
M. E. Meuti and D. L. Denlinger (2013)
Integr. Comp. Biol. 53, 131-143
   Abstract »    Full Text »    PDF »
p75 Neurotrophin Receptor Is a Clock Gene That Regulates Oscillatory Components of Circadian and Metabolic Networks.
B. Baeza-Raja, K. Eckel-Mahan, L. Zhang, E. Vagena, I. F. Tsigelny, P. Sassone-Corsi, L. J. Ptacek, and K. Akassoglou (2013)
J. Neurosci. 33, 10221-10234
   Abstract »    Full Text »    PDF »
Rhythmic profiles of cell cycle and circadian clock gene transcripts in mice: a possible association between two periodic systems.
Y. Weigl, I. E. Ashkenazi, and L. Peleg (2013)
J. Exp. Biol. 216, 2276-2282
   Abstract »    Full Text »    PDF »
Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling.
M. V. Plikus, C. Vollmers, D. de la Cruz, A. Chaix, R. Ramos, S. Panda, and C.-M. Chuong (2013)
PNAS 110, E2106-E2115
   Abstract »    Full Text »    PDF »
Genetics in endocrinology: Genetics of mineralocorticoid excess: an update for clinicians.
M.-C. Zennaro, A. J. Rickard, and S. Boulkroun (2013)
Eur. J. Endocrinol. 169, R15-R25
   Abstract »    Full Text »    PDF »
Molecular Mechanism Regulating 24-Hour Rhythm of Dopamine D3 Receptor Expression in Mouse Ventral Striatum.
E. Ikeda, N. Matsunaga, K. Kakimoto, K. Hamamura, A. Hayashi, S. Koyanagi, and S. Ohdo (2013)
Mol. Pharmacol. 83, 959-967
   Abstract »    Full Text »    PDF »
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.
R. Laranjeiro, T. K. Tamai, E. Peyric, P. Krusche, S. Ott, and D. Whitmore (2013)
PNAS 110, 6835-6840
   Abstract »    Full Text »    PDF »
Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries.
J. S. Jakobsen, J. Waage, N. Rapin, H. C. Bisgaard, F. S. Larsen, and B. T. Porse (2013)
Genome Res. 23, 592-603
   Abstract »    Full Text »    PDF »
Identification of gene sets and pathways associated with lactation performance in mice.
J. Wei, P. Ramanathan, I. C. Martin, C. Moran, R. M. Taylor, and P. Williamson (2013)
Physiol Genomics 45, 171-181
   Abstract »    Full Text »    PDF »
A NONO-gate times the cell cycle.
B. Maier and A. Kramer (2013)
PNAS 110, 1565-1566
   Full Text »    PDF »
NONO couples the circadian clock to the cell cycle.
E. Kowalska, J. A. Ripperger, D. C. Hoegger, P. Bruegger, T. Buch, T. Birchler, A. Mueller, U. Albrecht, C. Contaldo, and S. A. Brown (2013)
PNAS 110, 1592-1599
   Abstract »    Full Text »    PDF »
Reconstructing dynamic gene regulatory networks from sample-based transcriptional data.
H. Zhu, R. S. P. Rao, T. Zeng, and L. Chen (2012)
Nucleic Acids Res. 40, 10657-10667
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor-Induced Cerebral Insulin Resistance in Alzheimer's Disease Links Numerous Treatment Rationales.
I. Clark, C. Atwood, R. Bowen, G. Paz-Filho, and B. Vissel (2012)
Pharmacol. Rev. 64, 1004-1026
   Abstract »    Full Text »    PDF »
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis.
M. Geyfman, V. Kumar, Q. Liu, R. Ruiz, W. Gordon, F. Espitia, E. Cam, S. E. Millar, P. Smyth, A. Ihler, et al. (2012)
PNAS 109, 11758-11763
   Abstract »    Full Text »    PDF »
Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes.
F. Sporl, S. Korge, K. Jurchott, M. Wunderskirchner, K. Schellenberg, S. Heins, A. Specht, C. Stoll, R. Klemz, B. Maier, et al. (2012)
PNAS 109, 10903-10908
   Abstract »    Full Text »    PDF »
Light Acts on the Zebrafish Circadian Clock to Suppress Rhythmic Mitosis and Cell Proliferation.
T. K. Tamai, L. C. Young, C. A. Cox, and D. Whitmore (2012)
J Biol Rhythms 27, 226-236
   Abstract »    Full Text »    PDF »
p-Anilinoaniline Enhancement of Dioxin-Induced CYP1A1 Transcription and Aryl Hydrocarbon Receptor Occupancy of CYP1A1 Promoter: Role of the Cell Cycle.
A. Elliott, A. Joiakim, P. A. Mathieu, Z. Duniec-Dmuchowski, T. A. Kocarek, and J. J. Reiners Jr. (2012)
Drug Metab. Dispos. 40, 1032-1040
   Abstract »    Full Text »    PDF »
MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein.
Y. Zhu, Y. Lu, Q. Zhang, J.-J. Liu, T.-J. Li, J.-R. Yang, C. Zeng, and S.-M. Zhuang (2012)
Nucleic Acids Res. 40, 4615-4625
   Abstract »    Full Text »    PDF »
PML regulates PER2 nuclear localization and circadian function.
T. Miki, Z. Xu, M. Chen-Goodspeed, M. Liu, A. Van Oort-Jansen, M. A. Rea, Z. Zhao, C. C. Lee, and K.-S. Chang (2012)
EMBO J. 31, 1427-1439
   Abstract »    Full Text »    PDF »
Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis.
A. Atwood, R. DeConde, S. S. Wang, T. C. Mockler, J. S. M. Sabir, T. Ideker, and S. A. Kay (2011)
PNAS 108, 18560-18565
   Abstract »    Full Text »    PDF »
Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors.
A. Renzi, S. Glaser, S. DeMorrow, R. Mancinelli, F. Meng, A. Franchitto, J. Venter, M. White, H. Francis, Y. Han, et al. (2011)
Am J Physiol Gastrointest Liver Physiol 301, G634-G643
   Abstract »    Full Text »    PDF »
WEE1 Kinase Targeting Combined with DNA-Damaging Cancer Therapy Catalyzes Mitotic Catastrophe.
P. C. De Witt Hamer, S. E. Mir, D. Noske, C. J. F. Van Noorden, and T. Wurdinger (2011)
Clin. Cancer Res. 17, 4200-4207
   Abstract »    Full Text »    PDF »
Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression.
T. Allario, J. Brumos, J. M. Colmenero-Flores, F. Tadeo, Y. Froelicher, M. Talon, L. Navarro, P. Ollitrault, and R. Morillon (2011)
J. Exp. Bot. 62, 2507-2519
   Abstract »    Full Text »    PDF »
Purinergic Signals Regulate Daily S-Phase Cell Activity in the Ciliary Marginal Zone of the Zebrafish Retina.
M. Jimena Ricatti, A. G. Battista, M. Zorrilla Zubilete, and M. P. Faillace (2011)
J Biol Rhythms 26, 107-117
   Abstract »    PDF »
Altered Expression of Circadian Clock Genes in Human Chronic Myeloid Leukemia.
M.-Y. Yang, W.-C. Yang, P.-M. Lin, J.-F. Hsu, H.-H. Hsiao, Y.-C. Liu, H.-J. Tsai, C.-S. Chang, and S.-F. Lin (2011)
J Biol Rhythms 26, 136-148
   Abstract »    PDF »
An automaton model for the cell cycle.
A. Altinok, D. Gonze, F. Levi, and A. Goldbeter (2011)
Interface Focus 1, 36-47
   Abstract »    Full Text »    PDF »
Circadian Transcription Profile of Mouse Breast Cancer Under Light-Dark and Dark-Dark Conditions.
E.-Y. OH, X. YANG, A. FRIEDMAN, C. M. ANSELL, J. DU-QUITON, D. F. QUITON, P. A. WOOD, and W. J. M. HRUSHESKY (2010)
Cancer Genomics Proteomics 7, 311-322
   Abstract »    Full Text »    PDF »
Bezafibrate Induces Plasminogen Activator Inhibitor-1 Gene Expression in a CLOCK-Dependent Circadian Manner.
K. Oishi, S. Koyanagi, N. Matsunaga, K. Kadota, E. Ikeda, S. Hayashida, Y. Kuramoto, H. Shimeno, S. Soeda, and S. Ohdo (2010)
Mol. Pharmacol. 78, 135-141
   Abstract »    Full Text »    PDF »
Disruption of CLOCK-BMAL1 Transcriptional Activity Is Responsible for Aryl Hydrocarbon Receptor-Mediated Regulation of Period1 Gene.
C. X. Xu, S. L. Krager, D. F. Liao, and S. A. Tischkau (2010)
Toxicol. Sci. 115, 98-108
   Abstract »    Full Text »    PDF »
Cancer Inhibition through Circadian Reprogramming of Tumor Transcriptome with Meal Timing.
X. M. Li, F. Delaunay, S. Dulong, B. Claustrat, S. Zampera, Y. Fujii, M. Teboul, J. Beau, and F. Levi (2010)
Cancer Res. 70, 3351-3360
   Abstract »    Full Text »    PDF »
A wheel of time: the circadian clock, nuclear receptors, and physiology.
X. Yang (2010)
Genes & Dev. 24, 741-747
   Abstract »    Full Text »    PDF »
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate.
S. D'Autilia, V. Broccoli, G. Barsacchi, and M. Andreazzoli (2010)
PNAS 107, 6352-6357
   Abstract »    Full Text »    PDF »
The Core Circadian Gene Cryptochrome 2 Influences Breast Cancer Risk, Possibly by Mediating Hormone Signaling.
A. E. Hoffman, T. Zheng, C. H. Yi, R. G. Stevens, Y. Ba, Y. Zhang, D. Leaderer, T. Holford, J. Hansen, and Y. Zhu (2010)
Cancer Prevention Research 3, 539-548
   Abstract »    Full Text »    PDF »
Circadian Gating of the Cell Cycle Revealed in Single Cyanobacterial Cells.
Q. Yang, B. F. Pando, G. Dong, S. S. Golden, and A. van Oudenaarden (2010)
Science 327, 1522-1526
   Abstract »    Full Text »    PDF »
CLOCK in Breast Tumorigenesis: Genetic, Epigenetic, and Transcriptional Profiling Analyses.
A. E. Hoffman, C.-H. Yi, T. Zheng, R. G. Stevens, D. Leaderer, Y. Zhang, T. R. Holford, J. Hansen, J. Paulson, and Y. Zhu (2010)
Cancer Res. 70, 1459-1468
   Abstract »    Full Text »    PDF »
Mammalian Clock Gene Cryptochrome Regulates Arthritis via Proinflammatory Cytokine TNF-{alpha}.
A. Hashiramoto, T. Yamane, K. Tsumiyama, K. Yoshida, K. Komai, H. Yamada, F. Yamazaki, M. Doi, H. Okamura, and S. Shiozawa (2010)
J. Immunol. 184, 1560-1565
   Abstract »    Full Text »    PDF »
CIRCADIAN WINDOW OF OPPORTUNITY: WHAT HAVE WE LEARNED FROM INSECTS?.
J. Giebultowicz (2010)
J. Exp. Biol. 213, 185-186
   Full Text »    PDF »
Circadian Proteins and Genotoxic Stress Response.
M. P. Antoch and R. V. Kondratov (2010)
Circ. Res. 106, 68-78
   Abstract »    Full Text »    PDF »
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle.
C. Gerard and A. Goldbeter (2009)
PNAS 106, 21643-21648
   Abstract »    Full Text »    PDF »
Testing the Circadian Gene Hypothesis in Prostate Cancer: A Population-Based Case-Control Study.
Y. Zhu, R. G. Stevens, A. E. Hoffman, L. M. FitzGerald, E. M. Kwon, E. A. Ostrander, S. Davis, T. Zheng, and J. L. Stanford (2009)
Cancer Res. 69, 9315-9322
   Abstract »    Full Text »    PDF »
Circadian Disruption in Experimental Cancer Processes.
E. Filipski and F. Levi (2009)
Integr Cancer Ther 8, 298-302
   Abstract »    PDF »
Clock Genes and Cancer.
P. A. Wood, Xiaoming Yang, and W. J. M. Hrushesky (2009)
Integr Cancer Ther 8, 303-308
   Abstract »    PDF »
Circadian Disruption, Per3, and Human Cytokine Secretion.
J. Guess, J. B. Burch, K. Ogoussan, C. A. Armstead, Hongmei Zhang, S. Wagner, J. R. Hebert, P. Wood, S. D. Youngstedt, L. J. Hofseth, et al. (2009)
Integr Cancer Ther 8, 329-336
   Abstract »    PDF »
Circadian Time-Dependent Tumor Suppressor Function of Period Genes.
Xiaoming Yang, P. A. Wood, C. Ansell, and W. J. M. Hrushesky (2009)
Integr Cancer Ther 8, 309-316
   Abstract »    PDF »
Circadian Clock Manipulation for Cancer Prevention and Control and the Relief of Cancer Symptoms.
W. J. M. Hrushesky, J. Grutsch, P. Wood, Xiaoming Yang, E.-Y. Oh, C. Ansell, S. Kidder, C. Ferrans, D. F. T. Quiton, J. Reynolds, et al. (2009)
Integr Cancer Ther 8, 387-397
   Abstract »    PDF »
Per2 Is a C/EBP Target Gene Implicated in Myeloid Leukemia.
S. Gery and H. P. Koeffler (2009)
Integr Cancer Ther 8, 317-320
   Abstract »    PDF »
Circulating Tumor Cells in Metastatic Breast Cancer: Timing of Blood Extraction for Analysis.
M. MARTIN, J. A. GARCIA-SAENZ, M. L. M. DE LAS CASAS, M. VIDAURRETA, J. PUENTE, S. VEGANZONES, L. RODRIGUEZ-LAJUSTICIA, V. DE LA ORDEN, B. OLIVA, J.-C. DE LA TORRE, et al. (2009)
Anticancer Res 29, 4185-4187
   Abstract »    Full Text »    PDF »
A Role for the Clock Gene Per1 in Prostate Cancer.
Q. Cao, S. Gery, A. Dashti, D. Yin, Y. Zhou, J. Gu, and H. P. Koeffler (2009)
Cancer Res. 69, 7619-7625
   Abstract »    Full Text »    PDF »
Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain.
H.-Y. M. Cheng, M. Alvarez-Saavedra, H. Dziema, Y. S. Choi, A. Li, and K. Obrietan (2009)
Hum. Mol. Genet. 18, 3110-3124
   Abstract »    Full Text »    PDF »
A Phylogenetically Conserved DNA Damage Response Resets the Circadian Clock.
J. J. Gamsby, J. J. Loros, and J. C. Dunlap (2009)
J Biol Rhythms 24, 193-202
   Abstract »    PDF »
Clock-Cancer Connection in Non-Hodgkin's Lymphoma: A Genetic Association Study and Pathway Analysis of the Circadian Gene Cryptochrome 2.
A. E. Hoffman, T. Zheng, R. G. Stevens, Y. Ba, Y. Zhang, D. Leaderer, C. Yi, T. R. Holford, and Y. Zhu (2009)
Cancer Res. 69, 3605-3613
   Abstract »    Full Text »    PDF »
Clock Gene Mouse Period2 Overexpression Inhibits Growth of Human Pancreatic Cancer Cells and Has Synergistic Effect with Cisplatin.
A. ODA, Y. KATAYOSE, S. YABUUCHI, K. YAMAMOTO, M. MIZUMA, S. SHIRASOU, T. ONOGAWA, H. OHTSUKA, H. YOSHIDA, H. HAYASHI, et al. (2009)
Anticancer Res 29, 1201-1209
   Abstract »    Full Text »    PDF »
{beta}-Catenin Induces {beta}-TrCP-Mediated PER2 Degradation Altering Circadian Clock Gene Expression in Intestinal Mucosa of ApcMin/+ Mice.
X. Yang, P. A. Wood, C. M. Ansell, M. Ohmori, E.-Y. Oh, Y. Xiong, F. G. Berger, M. M. O. Pena, and W. J.M. Hrushesky (2009)
J. Biochem. 145, 289-297
   Abstract »    Full Text »    PDF »
Expression and Functional Analyses of Circadian Genes in Mouse Oocytes and Preimplantation Embryos: Cry1 Is Involved in the Meiotic Process Independently of Circadian Clock Regulation.
T. Amano, A. Matsushita, Y. Hatanaka, T. Watanabe, K. Oishi, N. Ishida, M. Anzai, T. Mitani, H. Kato, S. Kishigami, et al. (2009)
Biol Reprod 80, 473-483
   Abstract »    Full Text »    PDF »
Loss of cryptochrome reduces cancer risk in p53 mutant mice.
N. Ozturk, J. H. Lee, S. Gaddameedhi, and A. Sancar (2009)
PNAS 106, 2841-2846
   Abstract »    Full Text »    PDF »
Glucocorticoids and the circadian clock.
T. Dickmeis (2009)
J. Endocrinol. 200, 3-22
   Abstract »    Full Text »    PDF »
Period 2 Mutation Accelerates ApcMin/+ Tumorigenesis.
P. A. Wood, X. Yang, A. Taber, E.-Y. Oh, C. Ansell, S. E. Ayers, Z. Al-Assaad, K. Carnevale, F. G. Berger, M. M. O. Pena, et al. (2008)
Mol. Cancer Res. 6, 1786-1793
   Abstract »    Full Text »    PDF »
Implications of circadian clocks for the rhythmic delivery of cancer therapeutics.
F. Levi, A. Altinok, J. Clairambault, and A. Goldbeter (2008)
Phil Trans R Soc A 366, 3575-3598
   Abstract »    Full Text »    PDF »
S-Phase and M-Phase Timing Are under Independent Circadian Control in the Dinoflagellate Lingulodinium.
S. Dagenais-Bellefeuille, T. Bertomeu, and D. Morse (2008)
J Biol Rhythms 23, 400-408
   Abstract »    PDF »
Bifunctional Role of Rev-erb{alpha} in Adipocyte Differentiation.
J. Wang and M. A. Lazar (2008)
Mol. Cell. Biol. 28, 2213-2220
   Abstract »    Full Text »    PDF »
The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation.
A. Grechez-Cassiau, B. Rayet, F. Guillaumond, M. Teboul, and F. Delaunay (2008)
J. Biol. Chem. 283, 4535-4542
   Abstract »    Full Text »    PDF »
Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control.
J. Zamborszky, C. I. Hong, and A. Csikasz Nagy (2007)
J Biol Rhythms 22, 542-553
   Abstract »    PDF »
Circadian clocks: regulators of endocrine and metabolic rhythms.
M. Hastings, J. S O'Neill, and E. S Maywood (2007)
J. Endocrinol. 195, 187-198
   Abstract »    Full Text »    PDF »
Circadian Transcription Depends on Limiting Amounts of the Transcription Co-activator nejire/CBP.
H.-C. Hung, C. Maurer, S. A. Kay, and F. Weber (2007)
J. Biol. Chem. 282, 31349-31357
   Abstract »    Full Text »    PDF »
Diurnal protein expression in blood revealed by high throughput mass spectrometry proteomics and implications for translational medicine and body time of day.
T. A. Martino, N. Tata, G. A. Bjarnason, M. Straume, and M. J. Sole (2007)
Am J Physiol Regulatory Integrative Comp Physiol 293, R1430-R1437
   Abstract »    Full Text »    PDF »
Tumor Suppression and Circadian Function.
M. Chen-Goodspeed and Cheng Chi Lee (2007)
J Biol Rhythms 22, 291-298
   Abstract »    PDF »
Peripheral Circadian Clocks in the Vasculature.
D. F. Reilly, E. J. Westgate, and G. A. FitzGerald (2007)
Arterioscler Thromb Vasc Biol 27, 1694-1705
   Abstract »    Full Text »    PDF »
Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity.
Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. McKnight (2007)
Science 316, 1916-1919
   Abstract »    Full Text »    PDF »
SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins.
L. Busino, F. Bassermann, A. Maiolica, C. Lee, P. M. Nolan, S. I. H. Godinho, G. F. Draetta, and M. Pagano (2007)
Science 316, 900-904
   Abstract »    Full Text »    PDF »
Circadian Variations in Clock Gene Expression of Human Bone Marrow CD34+ Cells.
O. Tsinkalovsky, R. Smaaland, B. Rosenlund, R. B. Sothern, A. Hirt, S. Steine, A. Badiee, J. Foss Abrahamsen, H. G. Eiken, and O. D. Laerum (2007)
J Biol Rhythms 22, 140-150
   Abstract »    PDF »
Epigenetic Silencing of the Candidate Tumor Suppressor Gene Per1 in Non-Small Cell Lung Cancer.
S. Gery, N. Komatsu, N. Kawamata, C. W. Miller, J. Desmond, R. K. Virk, A. Marchevsky, R. Mckenna, H. Taguchi, and H. P. Koeffler (2007)
Clin. Cancer Res. 13, 1399-1404
   Abstract »    Full Text »    PDF »
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation.
B. H. Miller, E. L. McDearmon, S. Panda, K. R. Hayes, J. Zhang, J. L. Andrews, M. P. Antoch, J. R. Walker, K. A. Esser, J. B. Hogenesch, et al. (2007)
PNAS 104, 3342-3347
   Abstract »    Full Text »    PDF »
Genetic and Molecular Analysis of the Central and Peripheral Circadian Clockwork of Mice.
E. S. Maywood, J. S. O'Neill, A. B. Reddy, J. E. Chesham, H. M. Prosser, C. P. Kyriacou, S. I. H. Godinho, P. M. Nolan, and M. H. Hastings (2007)
Cold Spring Harb Symp Quant Biol 72, 85-94
   Abstract »    PDF »
Chromatin Remodeling and Circadian Control: Master Regulator CLOCK Is an Enzyme.
B. Grimaldi, Y. Nakahata, S. Sahar, M. Kaluzova, D. Gauthier, K. Pham, N. Patel, J. Hirayama, and P. Sassone-Corsi (2007)
Cold Spring Harb Symp Quant Biol 72, 105-112
   Abstract »    PDF »
Structure and Function of Animal Cryptochromes.
N. Ozturk, S.-H. Song, S. Ozgur, C. P. Selby, L. Morrison, C. Partch, D. Zhong, and A. Sancar (2007)
Cold Spring Harb Symp Quant Biol 72, 119-131
   Abstract »    PDF »
The Yeast Metabolic Cycle: Insights into the Life of a Eukaryotic Cell.
B. P. Tu and S. L. McKnight (2007)
Cold Spring Harb Symp Quant Biol 72, 339-343
   Abstract »    PDF »
Reversible Protein Phosphorylation Regulates Circadian Rhythms.
D. M. Virshup, E. J. Eide, D. B. Forger, M. Gallego, and E. V. Harnish (2007)
Cold Spring Harb Symp Quant Biol 72, 413-420
   Abstract »    PDF »
The Role of Circadian Regulation in Cancer.
S. Gery and H. P. Koeffler (2007)
Cold Spring Harb Symp Quant Biol 72, 459-464
   Abstract »    PDF »
Cross-talks between Circadian Timing System and Cell Division Cycle Determine Cancer Biology and Therapeutics.
F. Levi, E. Filipski, I. Iurisci, X. M. Li, and P. Innominato (2007)
Cold Spring Harb Symp Quant Biol 72, 465-475
   Abstract »    PDF »
The Clock Proteins, Aging, and Tumorigenesis.
R. V. Kondratov and M. P. Antoch (2007)
Cold Spring Harb Symp Quant Biol 72, 477-482
   Abstract »    PDF »
Suprachiasmatic Nucleus Clock Time in the Mammalian Circadian System.
H. Okamura (2007)
Cold Spring Harb Symp Quant Biol 72, 551-556
   Abstract »    PDF »
Hypothermia modulates circadian clock gene expression in lizard peripheral tissues.
D. Vallone, E. Frigato, C. Vernesi, A. Foa, N. S. Foulkes, and C. Bertolucci (2007)
Am J Physiol Regulatory Integrative Comp Physiol 292, R160-R166
   Abstract »    Full Text »    PDF »
Properties, Entrainment, and Physiological Functions of Mammalian Peripheral Oscillators.
M. Stratmann and U. Schibler (2006)
J Biol Rhythms 21, 494-506
   Abstract »    PDF »
Improved Tumor Control through Circadian Clock Induction by Seliciclib, a Cyclin-Dependent Kinase Inhibitor..
I. Iurisci, E. Filipski, J. Reinhardt, S. Bach, A. Gianella-Borradori, S. Iacobelli, L. Meijer, and F. Levi (2006)
Cancer Res. 66, 10720-10728
   Abstract »    Full Text »    PDF »
The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles.
A. M. Pregueiro, Q. Liu, C. L. Baker, J. C. Dunlap, and J. J. Loros (2006)
Science 313, 644-649
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882