Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 302 (5646): 875-878

Copyright © 2003 by the American Association for the Advancement of Science

Prevention of Organ Allograft Rejection by a Specific Janus Kinase 3 Inhibitor

Paul S. Changelian,1* Mark E. Flanagan,1 Douglas J. Ball,2 Craig R. Kent,1 Kelly S. Magnuson,1 William H. Martin,1 Bonnie J. Rizzuti,1 Perry S. Sawyer,1 Bret D. Perry,1 William H. Brissette,1 Sandra P. McCurdy,1 Elizabeth M. Kudlacz,1 Maryrose J. Conklyn,1 Eileen A. Elliott,1 Erika R. Koslov,1 Michael B. Fisher,3 Timothy J. Strelevitz,3 Kwansik Yoon,3 David A. Whipple,1 Jianmin Sun,1 Michael J. Munchhof,1 John L. Doty,1 Jeffrey M. Casavant,1 Todd A. Blumenkopf,1 Michael Hines,1 Matthew F. Brown,1 Brett M. Lillie,1 Chakrapani Subramanyam,1 Chang Shang-Poa,1 Anthony J. Milici,1 Gretchen E. Beckius,1 James D. Moyer,1 Chunyan Su,1 Thasia G. Woodworth,1 Anderson S. Gaweco,1 Chan R. Beals,1 Bruce H. Littman,1 Douglas A. Fisher,1 James F. Smith,1 Panayiotis Zagouras,4 Holly A. Magna,4 Mary J. Saltarelli,4 Kimberly S. Johnson,4 Linda F. Nelms,2 Shelley G. Des Etages,4 Lisa S. Hayes,4 Thomas T. Kawabata,2 Deborah Finco-Kent,2 Deanna L. Baker,2 Michael Larson,5 Ming-Sing Si,5 Ricardo Paniagua,5 John Higgins,6 Bari Holm,5 Bruce Reitz,5 Yong-Jie Zhou,7 Randall E. Morris,5 John J. O'Shea,7 Dominic C. Borie5*

Abstract: Because of its requirement for signaling by multiple cytokines, Janus kinase 3 (JAK3) is an excellent target for clinical immunosuppression. We report the development of a specific, orally active inhibitor of JAK3, CP-690,550, that significantly prolongedsurvival in a murine model of heart transplantation and in cynomolgus monkeys receiving kidney transplants. CP-690,550 treatment was not associatedwith hypertension, hyperlipidemia, or lymphoproliferative disease. On the basis of these preclinical results, we believe JAK3 blockade by CP-690,550 has potential for therapeutically desirable immunosuppression in human organ transplantation andin other clinical settings.

1 Immunology Group, Department of Antibacterials and Immunology, Pfizer Global Researchand Development, Groton, CT 06340, USA.
2 Department of Drug Safety Evaluation, Pfizer Global Researchand Development, Groton, CT 06340, USA.
3 Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Researchand Development, Groton, CT 06340, USA.
4 Department of Genomic and Proteomic Sciences, Pfizer Global Researchand Development, Groton, CT 06340, USA.
5 Transplantation Immunology Laboratory, Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
6 Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
7 Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, MD 20892, USA.

* To whom correspondence should be addressed. E-mail: paul_s_changelian{at}groton.pfizer.com (P.S.C.); dborie{at}stanford.edu (D.C.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events.
K. Sonomoto, K. Yamaoka, S. Kubo, S. Hirata, S. Fukuyo, K. Maeshima, K. Suzuki, K. Saito, and Y. Tanaka (2014)
Rheumatology 53, 914-918
   Abstract »    Full Text »    PDF »
Preclinical to Clinical Translation of Tofacitinib, a Janus Kinase Inhibitor, in Rheumatoid Arthritis.
M. E. Dowty, M. I. Jesson, S. Ghosh, J. Lee, D. M. Meyer, S. Krishnaswami, and N. Kishore (2014)
J. Pharmacol. Exp. Ther. 348, 165-173
   Abstract »    Full Text »    PDF »
Preclinical Characterization of GLPG0634, a Selective Inhibitor of JAK1, for the Treatment of Inflammatory Diseases.
L. Van Rompaey, R. Galien, E. M. van der Aar, P. Clement-Lacroix, L. Nelles, B. Smets, L. Lepescheux, T. Christophe, K. Conrath, N. Vandeghinste, et al. (2013)
J. Immunol. 191, 3568-3577
   Abstract »    Full Text »    PDF »
The Role of JAK-3 in Regulating TLR-Mediated Inflammatory Cytokine Production in Innate Immune Cells.
H. Wang, J. Brown, S. Gao, S. Liang, R. Jotwani, H. Zhou, J. Suttles, D. A. Scott, and R. J. Lamont (2013)
J. Immunol. 191, 1164-1174
   Abstract »    Full Text »    PDF »
Small molecules targeting JAKs--a new approach in the treatment of rheumatoid arthritis.
E. Feist and G. R. Burmester (2013)
Rheumatology 52, 1352-1357
   Abstract »    Full Text »    PDF »
Inhibition of JAKs in Macrophages Increases Lipopolysaccharide-Induced Cytokine Production by Blocking IL-10-Mediated Feedback.
M. J. Pattison, K. F. MacKenzie, and J. S. C. Arthur (2012)
J. Immunol. 189, 2784-2792
   Abstract »    Full Text »    PDF »
Interferon regulatory factor 8 integrates T-cell receptor and cytokine-signaling pathways and drives effector differentiation of CD8 T cells.
F. Miyagawa, H. Zhang, A. Terunuma, K. Ozato, Y. Tagaya, and S. I. Katz (2012)
PNAS 109, 12123-12128
   Abstract »    Full Text »    PDF »
Modulation of Activation-Loop Phosphorylation by JAK Inhibitors Is Binding Mode Dependent.
R. Andraos, Z. Qian, D. Bonenfant, J. Rubert, E. Vangrevelinghe, C. Scheufler, F. Marque, C. H. Regnier, A. De Pover, H. Ryckelynck, et al. (2012)
Cancer Discovery 2, 512-523
   Abstract »    Full Text »    PDF »
TSLP Signaling Network Revealed by SILAC-Based Phosphoproteomics.
J. Zhong, M.-S. Kim, R. Chaerkady, X. Wu, T.-C. Huang, D. Getnet, C. J. Mitchell, S. M. Palapetta, J. Sharma, R. N. O'Meally, et al. (2012)
Mol. Cell. Proteomics 11, M112.017764
   Abstract »    Full Text »    PDF »
In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis.
Y. Tanaka, Y. Maeshima, and K. Yamaoka (2012)
Ann Rheum Dis 71, i70-i74
   Abstract »    Full Text »    PDF »
Janus kinase 3: the controller and the controlled.
W. Wu and X.-H. Sun (2012)
Acta Biochim Biophys Sin 44, 187-196
   Abstract »    Full Text »    PDF »
The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon.
S. Rosengren, M. Corr, G. S. Firestein, and D. L. Boyle (2012)
Ann Rheum Dis 71, 440-447
   Abstract »    Full Text »    PDF »
Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell-stimulated T cells yet preserves immunity to recall antigen.
B. C. Betts, O. Abdel-Wahab, S. A. Curran, E. T. St Angelo, P. Koppikar, G. Heller, R. L. Levine, and J. W. Young (2011)
Blood 118, 5330-5339
   Abstract »    Full Text »    PDF »
IL-1{beta} and TNF{alpha}-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis.
T. Mori, T. Miyamoto, H. Yoshida, M. Asakawa, M. Kawasumi, T. Kobayashi, H. Morioka, K. Chiba, Y. Toyama, and A. Yoshimura (2011)
Int. Immunol. 23, 701-712
   Abstract »    Full Text »    PDF »
Influence of Janus Kinase Inhibition on Interleukin 6-mediated Induction of Acute-phase Serum Amyloid A in Rheumatoid Synovium.
K. MIGITA, T. KOGA, A. KOMORI, T. TORIGOSHI, Y. MAEDA, Y. IZUMI, J. SATO, Y. JIUCHI, T. MIYASHITA, S. YAMASAKI, et al. (2011)
J Rheumatol 38, 2309-2317
   Abstract »    Full Text »    PDF »
Mutant JAK3 FERMents ATLL.
M. Pesu (2011)
Blood 118, 3759-3760
   Full Text »    PDF »
Novel Therapeutic Options in Anaplastic Large Cell Lymphoma: Molecular Targets and Immunological Tools.
O. Merkel, F. Hamacher, E. Sifft, L. Kenner, R. Greil, and for the European Research Initiative on Anaplastic (2011)
Mol. Cancer Ther. 10, 1127-1136
   Abstract »    Full Text »    PDF »
Development of a High-Throughput Cell-Based Reporter Assay for Screening of JAK3 Inhibitors.
C.-H. Yin, E. A. Bach, and G.-H. Baeg (2011)
J Biomol Screen 16, 443-449
   Abstract »    Full Text »    PDF »
Modulation of Innate and Adaptive Immune Responses by Tofacitinib (CP-690,550).
K. Ghoreschi, M. I. Jesson, X. Li, J. L. Lee, S. Ghosh, J. W. Alsup, J. D. Warner, M. Tanaka, S. M. Steward-Tharp, M. Gadina, et al. (2011)
J. Immunol. 186, 4234-4243
   Abstract »    Full Text »    PDF »
CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP.
W. Ju, M. Zhang, J.-k. Jiang, C. J. Thomas, U. Oh, B. R. Bryant, J. Chen, N. Sato, Y. Tagaya, J. C. Morris, et al. (2011)
Blood 117, 1938-1946
   Abstract »    Full Text »    PDF »
Inhibition of ALK, PI3K/MEK, and HSP90 in Murine Lung Adenocarcinoma Induced by EML4-ALK Fusion Oncogene.
Z. Chen, T. Sasaki, X. Tan, J. Carretero, T. Shimamura, D. Li, C. Xu, Y. Wang, G. O. Adelmant, M. Capelletti, et al. (2010)
Cancer Res. 70, 9827-9836
   Abstract »    Full Text »    PDF »
Selective Inhibition of JAK1 and JAK2 Is Efficacious in Rodent Models of Arthritis: Preclinical Characterization of INCB028050.
J. S. Fridman, P. A. Scherle, R. Collins, T. C. Burn, Y. Li, J. Li, M. B. Covington, B. Thomas, P. Collier, M. F. Favata, et al. (2010)
J. Immunol. 184, 5298-5307
   Abstract »    Full Text »    PDF »
Interleukin 27: a double-edged sword for offense and defense.
H. Yoshida, M. Nakaya, and Y. Miyazaki (2009)
J. Leukoc. Biol. 86, 1295-1303
   Abstract »    Full Text »    PDF »
Combined Inhibition of Janus Kinase 1/2 for the Treatment of JAK2V617F-Driven Neoplasms: Selective Effects on Mutant Cells and Improvements in Measures of Disease Severity.
P. C.C. Liu, E. Caulder, J. Li, P. Waeltz, A. Margulis, R. Wynn, M. Becker-Pasha, Y. Li, E. Crowgey, G. Hollis, et al. (2009)
Clin. Cancer Res. 15, 6891-6900
   Abstract »    Full Text »    PDF »
A Novel Indole-3-propanamide Exerts Its Immunosuppressive Activity by Inhibiting JAK3 in T Cells.
D. Carbonnelle, M. Duflos, P. Marchand, C. Chauvet, J.-Y. Petit, and F. Lang (2009)
J. Pharmacol. Exp. Ther. 331, 710-716
   Abstract »    Full Text »    PDF »
JAK3 Inhibition Significantly Attenuates Psoriasiform Skin Inflammation in CD18 Mutant PL/J Mice.
B. Y. Chang, F. Zhao, X. He, H. Ren, S. Braselmann, V. Taylor, J. Wicks, D. G. Payan, E. B. Grossbard, P. R. Pine, et al. (2009)
J. Immunol. 183, 2183-2192
   Abstract »    Full Text »    PDF »
Signalling, inflammation and arthritis: Crossed signals: the role of interleukin-15 and -18 in autoimmunity.
H. P. Carroll, V. Paunovic, and M. Gadina (2008)
Rheumatology 47, 1269-1277
   Abstract »    Full Text »    PDF »
{gamma}c-Signaling Cytokines Induce a Regulatory T Cell Phenotype in Malignant CD4+ T Lymphocytes.
M. Kasprzycka, Q. Zhang, A. Witkiewicz, M. Marzec, M. Potoczek, X. Liu, H. Y. Wang, M. Milone, S. Basu, J. Mauger, et al. (2008)
J. Immunol. 181, 2506-2512
   Abstract »    Full Text »    PDF »
IL-7 Activates the Phosphatidylinositol 3-Kinase/AKT Pathway in Normal Human Thymocytes but Not Normal Human B Cell Precursors.
S. E. Johnson, N. Shah, A. A. Bajer, and T. W. LeBien (2008)
J. Immunol. 180, 8109-8117
   Abstract »    Full Text »    PDF »
Signalling, inflammation and arthritis: Crossed signals: the role of interleukin (IL)-12, -17, -23 and -27 in autoimmunity.
V. Paunovic, H. P. Carroll, K. Vandenbroeck, and M. Gadina (2008)
Rheumatology 47, 771-776
   Abstract »    Full Text »    PDF »
Phosphorylation of Human Jak3 at Tyrosines 904 and 939 Positively Regulates Its Activity.
H. Cheng, J. A. Ross, J. A. Frost, and R. A. Kirken (2008)
Mol. Cell. Biol. 28, 2271-2282
   Abstract »    Full Text »    PDF »
Differential Effects of Interleukin-2 and Interleukin-15 versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells.
M. Marzec, K. Halasa, M. Kasprzycka, M. Wysocka, X. Liu, J. W. Tobias, D. Baldwin, Q. Zhang, N. Odum, A. H. Rook, et al. (2008)
Cancer Res. 68, 1083-1091
   Abstract »    Full Text »    PDF »
IL-2- and IL-15-induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes.
M. Marzec, X. Liu, M. Kasprzycka, A. Witkiewicz, P. N. Raghunath, M. El-Salem, E. Robertson, N. Odum, and M. A. Wasik (2008)
Blood 111, 2181-2189
   Abstract »    Full Text »    PDF »
RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia.
J. W. Tyner, D. K. Walters, S. G. Willis, M. Luttropp, J. Oost, M. Loriaux, H. Erickson, A. S. Corbin, T. O'Hare, M. C. Heinrich, et al. (2008)
Blood 111, 2238-2245
   Abstract »    Full Text »    PDF »
The specificity of JAK3 kinase inhibitors.
P. S. Changelian, D. Moshinsky, C. F. Kuhn, M. E. Flanagan, M. J. Munchhof, T. M. Harris, D. A. Whipple, J. L. Doty, J. Sun, C. R. Kent, et al. (2008)
Blood 111, 2155-2157
   Abstract »    Full Text »    PDF »
PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models with EGFR and ERBB2 Mutations that Are Resistant to Gefitinib.
J. A. Engelman, K. Zejnullahu, C.-M. Gale, E. Lifshits, A. J. Gonzales, T. Shimamura, F. Zhao, P. W. Vincent, G. N. Naumov, J. E. Bradner, et al. (2007)
Cancer Res. 67, 11924-11932
   Abstract »    Full Text »    PDF »
Kaempferol Inhibits IL-4-Induced STAT6 Activation by Specifically Targeting JAK3.
J. R. Cortes, M. Perez-G, M. D. Rivas, and J. Zamorano (2007)
J. Immunol. 179, 3881-3887
   Abstract »    Full Text »    PDF »
Abrogation of Signal Transducer and Activator of Transcription 3 Reactivation after Src Kinase Inhibition Results in Synergistic Antitumor Effects.
F. M. Johnson, B. Saigal, H. Tran, and N. J. Donato (2007)
Clin. Cancer Res. 13, 4233-4244
   Abstract »    Full Text »    PDF »
Biology and Treatment of Primary Myelofibrosis.
R. Hoffman and D. Rondelli (2007)
Hematology 2007, 346-354
   Abstract »    Full Text »    PDF »
The Synthetic Triterpenoid CDDO-Imidazolide Suppresses STAT Phosphorylation and Induces Apoptosis in Myeloma and Lung Cancer Cells..
K. Liby, N. Voong, C. R. Williams, R. Risingsong, D. B. Royce, T. Honda, G. W. Gribble, M. B. Sporn, and J. J. Letterio (2006)
Clin. Cancer Res. 12, 4288-4293
   Abstract »    Full Text »    PDF »
Cytokines in Atherosclerosis: Pathogenic and Regulatory Pathways.
A. Tedgui and Z. Mallat (2006)
Physiol Rev 86, 515-581
   Abstract »    Full Text »    PDF »
Computer simulation of the role of SOCS family protein in helper T cell differentiation.
S. Yamada, J. Tsukada, A. Yoshimura, and M. Kubo (2006)
Int. Immunol. 18, 335-345
   Abstract »    Full Text »    PDF »
Role of JAK-STAT Signaling in the Pathogenesis of Myeloproliferative Disorders.
R. L. Levine and G. Wernig (2006)
Hematology 2006, 233-239
   Abstract »    Full Text »    PDF »
The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor.
I. S. Lucet, E. Fantino, M. Styles, R. Bamert, O. Patel, S. E. Broughton, M. Walter, C. J. Burns, H. Treutlein, A. F. Wilks, et al. (2006)
Blood 107, 176-183
   Abstract »    Full Text »    PDF »
Jak3 Kinase Domain Crystal Structures and Implications for Jak-Specific Drug Design..
T. J. Boggon (2005)
Blood (ASH Annual Meeting Abstracts) 106, 69
   Abstract »
Jak3 negatively regulates dendritic-cell cytokine production and survival.
K. Yamaoka, B. Min, Y.-J. Zhou, W. E. Paul, and J. J. O'Shea (2005)
Blood 106, 3227-3233
   Abstract »    Full Text »    PDF »
The Mannich Base NC1153 Promotes Long-Term Allograft Survival and Spares the Recipient from Multiple Toxicities.
S. M. Stepkowski, J. Kao, M.-E. Wang, N. Tejpal, H. Podder, L. Furian, J. Dimmock, A. Jha, U. Das, B. D. Kahan, et al. (2005)
J. Immunol. 175, 4236-4246
   Abstract »    Full Text »    PDF »
Structure of a Janus kinase: molecular insights and prospects for optimizing a new class of immunosuppressants.
J. J. O'Shea, M. Gadina, and X. Chen (2005)
Blood 106, 765-766
   Full Text »    PDF »
Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog.
T. J. Boggon, Y. Li, P. W. Manley, and M. J. Eck (2005)
Blood 106, 996-1002
   Abstract »    Full Text »    PDF »
Viral Infection in the Renal Transplant Recipient.
C. N. Kotton and J. A. Fishman (2005)
J. Am. Soc. Nephrol. 16, 1758-1774
   Abstract »    Full Text »    PDF »
CXCL12 Signaling Is Independent of Jak2 and Jak3.
M. Moriguchi, B. D. Hissong, M. Gadina, K. Yamaoka, H. L. Tiffany, P. M. Murphy, F. Candotti, and J. J. O'Shea (2005)
J. Biol. Chem. 280, 17408-17414
   Abstract »    Full Text »    PDF »
The JAK3 inhibitor CP-690550 selectively reduces NK and CD8+ cell numbers in cynomolgus monkey blood following chronic oral dosing.
M. Conklyn, C. Andresen, P. Changelian, and E. Kudlacz (2004)
J. Leukoc. Biol. 76, 1248-1255
   Abstract »    Full Text »    PDF »
Targeting the Jak/STAT pathway for immunosuppression.
J J O'Shea (2004)
Ann Rheum Dis 63, ii67-ii71
   Full Text »    PDF »
JAK3: not just another kinase.
W. Friedrich (2004)
Blood 103, 1978-1979
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882