Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 302 (5647): 1044-1046

Copyright © 2003 by the American Association for the Advancement of Science

Mammalian Brain Morphogenesis and Midline Axon Guidance Require Heparan Sulfate

Masaru Inatani,1 Fumitoshi Irie,1 Andrew S. Plump,2* Marc Tessier-Lavigne,2{dagger} Yu Yamaguchi1{ddagger}

Abstract: Heparan sulfate (HS) is required for morphogen signaling during Drosophila pattern formation, but little is known about its physiological importance in mammalian development. To define the developmental role of HS in mammalian species, we conditionally disrupted the HS-polymerizing enzyme EXT1 in the embryonic mouse brain. The EXT1-null brain exhibited patterning defects that are composites of those caused by mutations of multiple HS-binding morphogens. Furthermore, the EXT1-null brain displayed severe guidance errors in major commissural tracts, revealing a pivotal role of HS in midline axon guidance. These findings demonstrate that HS is essential for mammalian brain development.

1 The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
2 Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94035, USA.

Back to Top

* Present address: Merck Research Laboratories, 126 Lincoln Avenue, Rahway, NJ 07065, USA.

{dagger} Present address: Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

{ddagger} To whom correspondence should be addressed. E-mail: yyamaguchi{at}

Heparan Sulfotransferases Hs6st1 and Hs2st Keep Erk in Check for Mouse Corpus Callosum Development.
J. M. Clegg, C. D. Conway, K. M. Howe, D. J. Price, J. O. Mason, J. E. Turnbull, M. A. Basson, and T. Pratt (2014)
J. Neurosci. 34, 2389-2401
   Abstract »    Full Text »    PDF »
Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/{beta}-catenin signaling.
S. Yamamoto, H. Nakase, M. Matsuura, Y. Honzawa, K. Matsumura, N. Uza, Y. Yamaguchi, E. Mizoguchi, and T. Chiba (2013)
Am J Physiol Gastrointest Liver Physiol 305, G241-G249
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Analysis Reveals Broad Regulatory Role of Heparan Sulfate on Endothelial Signaling.
H. Qiu, J.-L. Jiang, M. Liu, X. Huang, S.-J. Ding, and L. Wang (2013)
Mol. Cell. Proteomics 12, 2160-2173
   Abstract »    Full Text »    PDF »
Role of High Endothelial Venule-Expressed Heparan Sulfate in Chemokine Presentation and Lymphocyte Homing.
K. Tsuboi, J. Hirakawa, E. Seki, Y. Imai, Y. Yamaguchi, M. Fukuda, and H. Kawashima (2013)
J. Immunol. 191, 448-455
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology.
A. A. Belov and M. Mohammadi (2013)
Cold Spring Harb Perspect Biol 5, a015958
   Abstract »    Full Text »    PDF »
Heparan Sulfate Biosynthesis: Regulation and Variability.
J. Kreuger and L. Kjellen (2012)
Journal of Histochemistry & Cytochemistry 60, 898-907
   Abstract »    Full Text »    PDF »
The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance.
J. Y. Cho, K. Chak, B. J. Andreone, J. R. Wooley, and A. L. Kolodkin (2012)
Genes & Dev. 26, 2222-2235
   Abstract »    Full Text »    PDF »
Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate.
F. Irie, H. Badie-Mahdavi, and Y. Yamaguchi (2012)
PNAS 109, 5052-5056
   Abstract »    Full Text »    PDF »
Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis.
D. Stenzel, A. Lundkvist, D. Sauvaget, M. Busse, M. Graupera, A. van der Flier, E. S. Wijelath, J. Murray, M. Sobel, M. Costell, et al. (2011)
Development 138, 4451-4463
   Abstract »    Full Text »    PDF »
Heparan Sulfate Regulates Intraretinal Axon Pathfinding by Retinal Ganglion Cells.
M. Ogata-Iwao, M. Inatani, K. Iwao, Y. Takihara, Y. Nakaishi-Fukuchi, F. Irie, S. Sato, T. Furukawa, Y. Yamaguchi, and H. Tanihara (2011)
Invest. Ophthalmol. Vis. Sci. 52, 6671-6679
   Abstract »    Full Text »    PDF »
Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism.
J. Tornberg, G. P. Sykiotis, K. Keefe, L. Plummer, X. Hoang, J. E. Hall, R. Quinton, S. B. Seminara, V. Hughes, G. Van Vliet, et al. (2011)
PNAS 108, 11524-11529
   Abstract »    Full Text »    PDF »
Heparan Sulfate Proteoglycans.
S. Sarrazin, W. C. Lamanna, and J. D. Esko (2011)
Cold Spring Harb Perspect Biol 3, a004952
   Abstract »    Full Text »    PDF »
Highly Sulfated Nonreducing End-derived Heparan Sulfate Domains Bind Fibroblast Growth Factor-2 with High Affinity and Are Enriched in Biologically Active Fractions.
H. Naimy, J. A. Buczek-Thomas, M. A. Nugent, N. Leymarie, and J. Zaia (2011)
J. Biol. Chem. 286, 19311-19319
   Abstract »    Full Text »    PDF »
Down-regulation of Chondroitin 4-O-Sulfotransferase-1 by Wnt Signaling Triggers Diffusion of Wnt-3a.
S. Nadanaka, H. Kinouchi, K. Taniguchi-Morita, J.-i. Tamura, and H. Kitagawa (2011)
J. Biol. Chem. 286, 4199-4208
   Abstract »    Full Text »    PDF »
Heparan Sulfate Sugar Modifications Mediate the Functions of Slits and Other Factors Needed for Mouse Forebrain Commissure Development.
C. D. Conway, K. M. Howe, N. K. Nettleton, D. J. Price, J. O. Mason, and T. Pratt (2011)
J. Neurosci. 31, 1955-1970
   Abstract »    Full Text »    PDF »
Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin.
M. M. Bespalov, Y. A. Sidorova, S. Tumova, A. Ahonen-Bishopp, A. C. Magalhaes, E. Kulesskiy, M. Paveliev, C. Rivera, H. Rauvala, and M. Saarma (2011)
J. Cell Biol. 192, 153-169
   Abstract »    Full Text »    PDF »
Heparan Sulfate Regulates VEGF165- and VEGF121-mediated Vascular Hyperpermeability.
D. Xu, M. M. Fuster, R. Lawrence, and J. D. Esko (2011)
J. Biol. Chem. 286, 737-745
   Abstract »    Full Text »    PDF »
MicroRNA-218 Regulates Vascular Patterning by Modulation of Slit-Robo Signaling.
E. M. Small, L. B. Sutherland, K. N. Rajagopalan, S. Wang, and E. N. Olson (2010)
Circ. Res. 107, 1336-1344
   Abstract »    Full Text »    PDF »
Influence of Heparin Mimetics on Assembly of the FGF{middle dot}FGFR4 Signaling Complex.
K. Saxena, U. Schieborr, O. Anderka, E. Duchardt-Ferner, B. Elshorst, S. L. Gande, J. Janzon, D. Kudlinzki, S. Sreeramulu, M. K. Dreyer, et al. (2010)
J. Biol. Chem. 285, 26628-26640
   Abstract »    Full Text »    PDF »
Conditional Ablation of the Heparan Sulfate-synthesizing Enzyme Ext1 Leads to Dysregulation of Bone Morphogenic Protein Signaling and Severe Skeletal Defects.
Y. Matsumoto, K. Matsumoto, F. Irie, J.-i. Fukushi, W. B. Stallcup, and Y. Yamaguchi (2010)
J. Biol. Chem. 285, 19227-19234
   Abstract »    Full Text »    PDF »
Moving away from the midline: new developments for Slit and Robo.
A. R. Ypsilanti, Y. Zagar, and A. Chedotal (2010)
Development 137, 1939-1952
   Abstract »    Full Text »    PDF »
A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses.
K. Matsumoto, F. Irie, S. Mackem, and Y. Yamaguchi (2010)
PNAS 107, 10932-10937
   Abstract »    Full Text »    PDF »
Heparan Sulfate Is Required for Embryonic Stem Cells to Exit from Self-renewal.
D. C. Kraushaar, Y. Yamaguchi, and L. Wang (2010)
J. Biol. Chem. 285, 5907-5916
   Abstract »    Full Text »    PDF »
Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb.
K. Matsumoto, Y. Li, C. Jakuba, Y. Sugiyama, T. Sayo, M. Okuno, C. N. Dealy, B. P. Toole, J. Takeda, Y. Yamaguchi, et al. (2009)
Development 136, 2825-2835
   Abstract »    Full Text »    PDF »
Peripheral mural cell recruitment requires cell-autonomous heparan sulfate.
D. Stenzel, E. Nye, M. Nisancioglu, R. H. Adams, Y. Yamaguchi, and H. Gerhardt (2009)
Blood 114, 915-924
   Abstract »    Full Text »    PDF »
Netrin-DCC, Robo-Slit, and Heparan Sulfate Proteoglycans Coordinate Lateral Positioning of Longitudinal Dopaminergic Diencephalospinal Axons.
E. Kastenhuber, U. Kern, J. L. Bonkowsky, C.-B. Chien, W. Driever, and J. Schweitzer (2009)
J. Neurosci. 29, 8914-8926
   Abstract »    Full Text »    PDF »
Structure and functional relevance of the Slit2 homodimerization domain.
E. Seiradake, A. C. von Philipsborn, M. Henry, M. Fritz, H. Lortat-Jacob, M. Jamin, W. Hemrika, M. Bastmeyer, S. Cusack, and A. A. McCarthy (2009)
EMBO Rep. 10, 736-741
   Abstract »    Full Text »    PDF »
Lack ofL-Iduronic Acid in Heparan Sulfate Affects Interaction with Growth Factors and Cell Signaling.
J. Jia, M. Maccarana, X. Zhang, M. Bespalov, U. Lindahl, and J.-P. Li (2009)
J. Biol. Chem. 284, 15942-15950
   Abstract »    Full Text »    PDF »
Conditional Gene Targeting in Mouse High Endothelial Venules.
H. Kawashima, J. Hirakawa, Y. Tobisawa, M. Fukuda, and Y. Saga (2009)
J. Immunol. 182, 5461-5468
   Abstract »    Full Text »    PDF »
Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons.
C. Sanchez-Camacho and P. Bovolenta (2008)
Development 135, 3531-3541
   Abstract »    Full Text »    PDF »
Deoxyribozyme-mediated knockdown of xylosyltransferase-1 mRNA promotes axon growth in the adult rat spinal cord.
A. Hurtado, H. Podinin, M. Oudega, and B. Grimpe (2008)
Brain 131, 2596-2605
   Abstract »    Full Text »    PDF »
Heparan sulfate regulates ephrin-A3/EphA receptor signaling.
F. Irie, M. Okuno, K. Matsumoto, E. B. Pasquale, and Y. Yamaguchi (2008)
PNAS 105, 12307-12312
   Abstract »    Full Text »    PDF »
Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse.
D. T. Plas, O. S. Dhande, J. E. Lopez, D. Murali, C. Thaller, M. Henkemeyer, Y. Furuta, P. Overbeek, and M. C. Crair (2008)
J. Neurosci. 28, 7057-7067
   Abstract »    Full Text »    PDF »
Heparan Sulphate Biosynthesis and Disease.
S. Nadanaka and H. Kitagawa (2008)
J. Biochem. 144, 7-14
   Abstract »    Full Text »    PDF »
Altered Heparan Sulfate Structure in Mice with Deleted NDST3 Gene Function.
S. R. Pallerla, R. Lawrence, L. Lewejohann, Y. Pan, T. Fischer, U. Schlomann, X. Zhang, J. D. Esko, and K. Grobe (2008)
J. Biol. Chem. 283, 16885-16894
   Abstract »    Full Text »    PDF »
Structural and Functional Analysis of Slit and Heparin Binding to Immunoglobulin-like Domains 1 and 2 of Drosophila Robo.
N. Fukuhara, J. A. Howitt, S.-A. Hussain, and E. Hohenester (2008)
J. Biol. Chem. 283, 16226-16234
   Abstract »    Full Text »    PDF »
The Extremely Conserved C-terminal Region of Reelin Is Not Necessary for Secretion but Is Required for Efficient Activation of Downstream Signaling.
Y. Nakano, T. Kohno, T. Hibi, S. Kohno, A. Baba, K. Mikoshiba, K. Nakajima, and M. Hattori (2007)
J. Biol. Chem. 282, 20544-20552
   Abstract »    Full Text »    PDF »
The expression and functions of glycoconjugates in neural stem cells.
M. Yanagisawa and R. K Yu (2007)
Glycobiology 17, 57R-74R
   Abstract »    Full Text »    PDF »
Mice Deficient in Heparan Sulfate 6-O-Sulfotransferase-1 Exhibit Defective Heparan Sulfate Biosynthesis, Abnormal Placentation, and Late Embryonic Lethality.
H. Habuchi, N. Nagai, N. Sugaya, F. Atsumi, R. L. Stevens, and K. Kimata (2007)
J. Biol. Chem. 282, 15578-15588
   Abstract »    Full Text »    PDF »
Robo1 and Robo2 Cooperate to Control the Guidance of Major Axonal Tracts in the Mammalian Forebrain.
G. Lopez-Bendito, N. Flames, L. Ma, C. Fouquet, T. Di Meglio, A. Chedotal, M. Tessier-Lavigne, and O. Marin (2007)
J. Neurosci. 27, 3395-3407
   Abstract »    Full Text »    PDF »
XT-II, the Second Isoform of Human Peptide-O-xylosyltransferase, Displays Enzymatic Activity.
J. Voglmeir, R. Voglauer, and I. B. H. Wilson (2007)
J. Biol. Chem. 282, 5984-5990
   Abstract »    Full Text »    PDF »
Molecular regulation of visual system development: more than meets the eye.
T. Harada, C. Harada, and L. F. Parada (2007)
Genes & Dev. 21, 367-378
   Abstract »    Full Text »    PDF »
A Molecular Mechanism for the Heparan Sulfate Dependence of Slit-Robo Signaling.
S.-A. Hussain, M. Piper, N. Fukuhara, L. Strochlic, G. Cho, J. A. Howitt, Y. Ahmed, A. K. Powell, J. E. Turnbull, C. E. Holt, et al. (2006)
J. Biol. Chem. 281, 39693-39698
   Abstract »    Full Text »    PDF »
Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development.
Y. Pan, A. Woodbury, J. D. Esko, K. Grobe, and X. Zhang (2006)
Development 133, 4933-4944
   Abstract »    Full Text »    PDF »
Heparan Sulfate-related Oligosaccharides in Ternary Complex Formation with Fibroblast Growth Factors 1 and 2 and Their Receptors.
N. Jastrebova, M. Vanwildemeersch, A. C. Rapraeger, G. Gimenez-Gallego, U. Lindahl, and D. Spillmann (2006)
J. Biol. Chem. 281, 26884-26892
   Abstract »    Full Text »    PDF »
N-syndecan deficiency impairs neural migration in brain.
A. Hienola, S. Tumova, E. Kulesskiy, and H. Rauvala (2006)
J. Cell Biol. 174, 569-580
   Abstract »    Full Text »    PDF »
Slit Proteins Regulate Distinct Aspects of Retinal Ganglion Cell Axon Guidance within Dorsal and Ventral Retina.
H. Thompson, O. Camand, D. Barker, and L. Erskine (2006)
J. Neurosci. 26, 8082-8091
   Abstract »    Full Text »    PDF »
Interactions between heparan sulfate and proteins: the concept of specificity.
J. Kreuger, D. Spillmann, J.-p. Li, and U. Lindahl (2006)
J. Cell Biol. 174, 323-327
   Abstract »    Full Text »    PDF »
Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm..
T. Pratt, C. D. Conway, N. M. M.-L. Tian, D. J. Price, and J. O. Mason (2006)
J. Neurosci. 26, 6911-6923
   Abstract »    Full Text »    PDF »
Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta..
N. Uetani, M. J. Chagnon, T. E. Kennedy, Y. Iwakura, and M. L. Tremblay (2006)
J. Neurosci. 26, 5872-5880
   Abstract »    Full Text »    PDF »
Shedding Light on the Distinct Functions of Proteoglycans.
S. B. Selleck (2006)
Sci. STKE 2006, pe17
   Abstract »    Full Text »    PDF »
HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.
W. H. J. Norton, J. Ledin, H. Grandel, and C. J. Neumann (2005)
Development 132, 4963-4973
   Abstract »    Full Text »    PDF »
Syndecan regulates cell migration and axon guidance in C. elegans.
C. Rhiner, S. Gysi, E. Frohli, M. O. Hengartner, and A. Hajnal (2005)
Development 132, 4621-4633
   Abstract »    Full Text »    PDF »
Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain.
T. Yabe, T. Hata, J. He, and N. Maeda (2005)
Glycobiology 15, 982-993
   Abstract »    Full Text »    PDF »
Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function.
K. Grobe, M. Inatani, S. R. Pallerla, J. Castagnola, Y. Yamaguchi, and J. D. Esko (2005)
Development 132, 3777-3786
   Abstract »    Full Text »    PDF »
Effect of C-reactive protein on gene expression in vascular endothelial cells.
Q. Wang, X. Zhu, Q. Xu, X. Ding, Y. E. Chen, and Q. Song (2005)
Am J Physiol Heart Circ Physiol 288, H1539-H1545
   Abstract »    Full Text »    PDF »
Specific Structural Features of Heparan Sulfate Proteoglycans Potentiate Neuregulin-1 Signaling.
M. S. Pankonin, J. T. Gallagher, and J. A. Loeb (2005)
J. Biol. Chem. 280, 383-388
   Abstract »    Full Text »    PDF »
Embryonic Fibroblasts with a Gene Trap Mutation in Ext1 Produce Short Heparan Sulfate Chains.
S. Yamada, M. Busse, M. Ueno, O. G. Kelly, W. C. Skarnes, K. Sugahara, and M. Kusche-Gullberg (2004)
J. Biol. Chem. 279, 32134-32141
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882