Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 302 (5647): 1049-1053

Copyright © 2003 by the American Association for the Advancement of Science

Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock

Todd P. Michael,1 Patrice A. Salomé,1 Hannah J. Yu,1 Taylor R. Spencer,1 Emily L. Sharp,1 Mark A. McPeek,1 José M. Alonso,2* Joseph R. Ecker,2 C. Robertson McClung1{dagger}

Abstract: Natural variation in clock parameters is necessary for the circadian clock to contribute to organismal fitness over a broad geographic range. Considerable variation is evident in the period, phase, and amplitude of 150 Arabidopsis accessions, and the period length is correlated with the day length at the latitude of origin, implying the adaptive significance of correctly regulated circadian timing. Quantitative trait loci analysis of recombinant inbred lines indicates that multiple loci interact to determine period, phase, and amplitude. The loss-of-function analysis of each member of the ARABIDOPSIS PSEUDO-RESPONSE REGULATOR family suggests that they are candidates for clock quantitative trait loci.

1 Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA.
2 Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

Back to Top

* Present address: Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA.

{dagger} To whom correspondence should be addressed. E-mail: mcclung{at}

No Time for Spruce: Rapid Dampening of Circadian Rhythms in Picea abies (L. Karst).
N. Gyllenstrand, A. Karlgren, D. Clapham, K. Holm, A. Hall, P. D. Gould, T. Kallman, and U. Lagercrantz (2014)
Plant Cell Physiol. 55, 535-550
   Abstract »    Full Text »    PDF »
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis.
D. R. MacGregor, P. Gould, J. Foreman, J. Griffiths, S. Bird, R. Page, K. Stewart, G. Steel, J. Young, K. Paszkiewicz, et al. (2013)
PLANT CELL 25, 4391-4404
   Abstract »    Full Text »    PDF »
Latitudinal clines: an evolutionary view on biological rhythms.
R. A. Hut, S. Paolucci, R. Dor, C. P. Kyriacou, and S. Daan (2013)
Proc R Soc B 280, 20130433
   Abstract »    Full Text »    PDF »
Clocks for the city: circadian differences between forest and city songbirds.
D. M. Dominoni, B. Helm, M. Lehmann, H. B. Dowse, and J. Partecke (2013)
Proc R Soc B 280, 20130593
   Abstract »    Full Text »    PDF »
Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis.
S. Hong, S. A. Kim, M. L. Guerinot, and C. R. McClung (2013)
Plant Physiology 161, 893-903
   Abstract »    Full Text »    PDF »
SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis.
X. Wang, F. Wu, Q. Xie, H. Wang, Y. Wang, Y. Yue, O. Gahura, S. Ma, L. Liu, Y. Cao, et al. (2012)
PLANT CELL 24, 3278-3295
   Abstract »    Full Text »    PDF »
Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?.
T. Ruts, S. Matsubara, A. Wiese-Klinkenberg, and A. Walter (2012)
J. Exp. Bot. 63, 3339-3351
   Abstract »    Full Text »    PDF »
Multi-dimensional regulation of metabolic networks shaping plant development and performance.
R. Kooke and J. J. B. Keurentjes (2012)
J. Exp. Bot. 63, 3353-3365
   Abstract »    Full Text »    PDF »
Timely plant defenses protect against caterpillar herbivory.
G. Jander (2012)
PNAS 109, 4343-4344
   Full Text »    PDF »
Ca2+-dependent GTPase, Extra-large G Protein 2 (XLG2), Promotes Activation of DNA-binding Protein Related to Vernalization 1 (RTV1), Leading to Activation of Floral Integrator Genes and Early Flowering in Arabidopsis.
J. B. Heo, S. Sung, and S. M. Assmann (2012)
J. Biol. Chem. 287, 8242-8253
   Abstract »    Full Text »    PDF »
Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes.
A. B. James, N. H. Syed, S. Bordage, J. Marshall, G. A. Nimmo, G. I. Jenkins, P. Herzyk, J. W. S. Brown, and H. G. Nimmo (2012)
PLANT CELL 24, 961-981
   Abstract »    Full Text »    PDF »
HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
T.-s. Kim, W. Y. Kim, S. Fujiwara, J. Kim, J.-Y. Cha, J. H. Park, S. Y. Lee, and D. E. Somers (2011)
PNAS 108, 16843-16848
   Abstract »    Full Text »    PDF »
Environmental Memory from a Circadian Oscillator: The Arabidopsis thaliana Clock Differentially Integrates Perception of Photic vs. Thermal Entrainment.
E. Boikoglou, Z. Ma, M. von Korff, A. M. Davis, F. Nagy, and S. J. Davis (2011)
Genetics 189, 655-664
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
The Genetic Architecture of Ecophysiological and Circadian Traits in Brassica rapa.
C. E. Edwards, B. E. Ewers, D. G. Williams, Q. Xie, P. Lou, X. Xu, C. R. McClung, and C. Weinig (2011)
Genetics 189, 375-390
   Abstract »    Full Text »    PDF »
Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.
R. A. Hut and D. G. M. Beersma (2011)
Phil Trans R Soc B 366, 2141-2154
   Abstract »    Full Text »    PDF »
Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field.
T. Izawa, M. Mihara, Y. Suzuki, M. Gupta, H. Itoh, A. J. Nagano, R. Motoyama, Y. Sawada, M. Yano, M. Y. Hirai, et al. (2011)
PLANT CELL 23, 1741-1755
   Abstract »    Full Text »    PDF »
Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock.
M. Johansson, H. G. McWatters, L. Bako, N. Takata, P. Gyula, A. Hall, D. E. Somers, A. J. Millar, and M. E. Eriksson (2011)
Plant Physiology 155, 2108-2122
   Abstract »    Full Text »    PDF »
BROTHER OF LUX ARRHYTHMO Is a Component of the Arabidopsis Circadian Clock.
S. Dai, X. Wei, L. Pei, R. L. Thompson, Y. Liu, J. E. Heard, T. G. Ruff, and R. N. Beachy (2011)
PLANT CELL 23, 961-972
   Abstract »    Full Text »    PDF »
A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish.
R. Yammouni, A. Bozzano, and R. H. Douglas (2011)
J. Exp. Biol. 214, 501-508
   Abstract »    Full Text »    PDF »
Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis.
R. E. Kerwin, J. M. Jimenez-Gomez, D. Fulop, S. L. Harmer, J. N. Maloof, and D. J. Kliebenstein (2011)
PLANT CELL 23, 471-485
   Abstract »    Full Text »    PDF »
The Jumonji C Domain-Containing Protein JMJ30 Regulates Period Length in the Arabidopsis Circadian Clock.
S. X. Lu, S. M. Knowles, C. J. Webb, R. B. Celaya, C. Cha, J. P. Siu, and E. M. Tobin (2011)
Plant Physiology 155, 906-915
   Abstract »    Full Text »    PDF »
Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana.
Y. Li, Y. Huang, J. Bergelson, M. Nordborg, and J. O. Borevitz (2010)
PNAS 107, 21199-21204
   Abstract »    Full Text »    PDF »
Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice.
G.-S. Song, H.-L. Zhai, Y.-G. Peng, L. Zhang, G. Wei, X.-Y. Chen, Y.-G. Xiao, L. Wang, Y.-J. Chen, B. Wu, et al. (2010)
Mol Plant 3, 1012-1025
   Abstract »    Full Text »    PDF »
The Role of the Arabidopsis Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation.
P. A. Salome, D. Weigel, and C. R. McClung (2010)
PLANT CELL 22, 3650-3661
   Abstract »    Full Text »    PDF »
Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts.
J. Kim and D. E. Somers (2010)
Plant Physiology 154, 611-621
   Abstract »    Full Text »    PDF »
F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression.
A. Baudry, S. Ito, Y. H. Song, A. A. Strait, T. Kiba, S. Lu, R. Henriques, J. L. Pruneda-Paz, N. H. Chua, E. M. Tobin, et al. (2010)
PLANT CELL 22, 606-622
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the Arabidopsis Circadian Clock.
N. Nakamichi, T. Kiba, R. Henriques, T. Mizuno, N. H. Chua, and H. Sakakibara (2010)
PLANT CELL 22, 594-605
   Abstract »    Full Text »    PDF »
Phytochrome functions in Arabidopsis development.
K. A. Franklin and P. H. Quail (2010)
J. Exp. Bot. 61, 11-24
   Abstract »    Full Text »    PDF »
TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought.
T. Legnaioli, J. Cuevas, and P. Mas (2009)
EMBO J. 28, 3745-3757
   Abstract »    Full Text »    PDF »
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.
R. Rawat, J. Schwartz, M. A. Jones, I. Sairanen, Y. Cheng, C. R. Andersson, Y. Zhao, K. Ljung, and S. L. Harmer (2009)
PNAS 106, 16883-16888
   Abstract »    Full Text »    PDF »
Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways.
Y. Pan, T. P. Michael, M. E. Hudson, S. A. Kay, J. Chory, and M. A. Schuler (2009)
Plant Physiology 150, 858-878
   Abstract »    Full Text »    PDF »
Inflorescences contribute more than rosettes to lifetime carbon gain in Arabidopsis thaliana (Brassicaceae).
E. J. Earley, B. Ingland, J. Winkler, and S. J. Tonsor (2009)
Am. J. Botany 96, 786-792
   Abstract »    Full Text »    PDF »
A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene.
S. Ito, H. Kawamura, Y. Niwa, N. Nakamichi, T. Yamashino, and T. Mizuno (2009)
Plant Cell Physiol. 50, 290-303
   Abstract »    Full Text »    PDF »
The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots.
A. B. James, J. A. Monreal, G. A. Nimmo, C. L. Kelly, P. Herzyk, G. I. Jenkins, and H. G. Nimmo (2008)
Science 322, 1832-1835
   Abstract »    Full Text »    PDF »
Involvement of Arabidopsis Clock-Associated Pseudo-Response Regulators in Diurnal Oscillations of Gene Expression in the Presence of Environmental Time Cues.
T. Yamashino, S. Ito, Y. Niwa, A. Kunihiro, N. Nakamichi, and T. Mizuno (2008)
Plant Cell Physiol. 49, 1839-1850
   Abstract »    Full Text »    PDF »
Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering.
J.-F. Wu, Y. Wang, and S.-H. Wu (2008)
Plant Physiology 148, 948-959
   Abstract »    Full Text »    PDF »
Post-translational Regulation of the Arabidopsis Circadian Clock through Selective Proteolysis and Phosphorylation of Pseudo-response Regulator Proteins.
S. Fujiwara, L. Wang, L. Han, S.-S. Suh, P. A. Salome, C. R. McClung, and D. E. Somers (2008)
J. Biol. Chem. 283, 23073-23083
   Abstract »    Full Text »    PDF »
Circadian Timekeeping during Early Arabidopsis Development.
P. A. Salome, Q. Xie, and C. R. McClung (2008)
Plant Physiology 147, 1110-1125
   Abstract »    Full Text »    PDF »
Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome.
Z. Bieniawska, C. Espinoza, A. Schlereth, R. Sulpice, D. K. Hincha, and M. A. Hannah (2008)
Plant Physiology 147, 263-279
   Abstract »    Full Text »    PDF »
Quantitative Trait Loci for the Circadian Clock in Neurospora crassa.
T.-S. Kim, B. A. Logsdon, S. Park, J. G. Mezey, and K. Lee (2007)
Genetics 177, 2335-2347
   Abstract »    Full Text »    PDF »
Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and Rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 Promoter Activity in Arabidopsis.
X. Xu, C. T. Hotta, A. N. Dodd, J. Love, R. Sharrock, Y. W. Lee, Q. Xie, C. H. Johnson, and A. A.R. Webb (2007)
PLANT CELL 19, 3474-3490
   Abstract »    Full Text »    PDF »
Differential Expression of Genes Important for Adaptation in Capsella bursa-pastoris (Brassicaceae).
T. Slotte, K. Holm, L. M. McIntyre, U. Lagercrantz, and M. Lascoux (2007)
Plant Physiology 145, 160-173
   Abstract »    Full Text »    PDF »
Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL Complex Regulates Clock Function and Photomorphogenesis in Arabidopsis thaliana.
T. Kiba, R. Henriques, H. Sakakibara, and N.-H. Chua (2007)
PLANT CELL 19, 2516-2530
   Abstract »    Full Text »    PDF »
Genetic Linkages Between Circadian Clock-Associated Components and Phytochrome-Dependent Red Light Signal Transduction in Arabidopsis thaliana.
S. Ito, N. Nakamichi, Y. Nakamura, Y. Niwa, T. Kato, M. Murakami, M. Kita, T. Mizoguchi, K. Niinuma, T. Yamashino, et al. (2007)
Plant Cell Physiol. 48, 971-983
   Abstract »    Full Text »    PDF »
A Functional Link between Rhythmic Changes in Chromatin Structure and the Arabidopsis Biological Clock.
M. Perales and P. Mas (2007)
PLANT CELL 19, 2111-2123
   Abstract »    Full Text »    PDF »
TIME FOR COFFEE Encodes a Nuclear Regulator in the Arabidopsis thaliana Circadian Clock.
Z. Ding, A. J. Millar, A. M. Davis, and S. J. Davis (2007)
PLANT CELL 19, 1522-1536
   Abstract »    Full Text »    PDF »
Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
J. Cockram, H. Jones, F. J. Leigh, D. O'Sullivan, W. Powell, D. A. Laurie, and A. J. Greenland (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci.
J. J. B. Keurentjes, J. Fu, I. R. Terpstra, J. M. Garcia, G. van den Ackerveken, L. B. Snoek, A. J. M. Peeters, D. Vreugdenhil, M. Koornneef, and R. C. Jansen (2007)
PNAS 104, 1708-1713
   Abstract »    Full Text »    PDF »
Biological Rhythms Workshop IA: Molecular Basis of Rhythms Generation.
S. R. Mackey (2007)
Cold Spring Harb Symp Quant Biol 72, 7-19
   Abstract »    PDF »
Posttranslational Photomodulation of Circadian Amplitude.
D. E. Somers, S. Fujiwara, W.-Y. Kim, and S.-S. Suh (2007)
Cold Spring Harb Symp Quant Biol 72, 193-200
   Abstract »    PDF »
Entrainment of the Human Circadian Clock.
T. Roenneberg and M. Merrow (2007)
Cold Spring Harb Symp Quant Biol 72, 293-299
   Abstract »    PDF »
The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis.
T. C. Mockler, T. P. Michael, H. D. Priest, R. Shen, C. M. Sullivan, S. A. Givan, C. McEntee, S. A. Kay, and J. Chory (2007)
Cold Spring Harb Symp Quant Biol 72, 353-363
   Abstract »    PDF »
GIGANTEA Acts in Blue Light Signaling and Has Biochemically Separable Roles in Circadian Clock and Flowering Time Regulation.
E. L. Martin-Tryon, J. A. Kreps, and S. L. Harmer (2007)
Plant Physiology 143, 473-486
   Abstract »    Full Text »    PDF »
Natural Genetic Variation of Freezing Tolerance in Arabidopsis.
M. A. Hannah, D. Wiese, S. Freund, O. Fiehn, A. G. Heyer, and D. K. Hincha (2006)
Plant Physiology 142, 98-112
   Abstract »    Full Text »    PDF »
Conserved Expression Profiles of Circadian Clock-related Genes in Two Lemna Species Showing Long-day and Short-day Photoperiodic Flowering Responses.
K. Miwa, M. Serikawa, S. Suzuki, T. Kondo, and T. Oyama (2006)
Plant Cell Physiol. 47, 601-612
   Abstract »    Full Text »    PDF »
Plant Circadian Rhythms.
C. R. McClung (2006)
PLANT CELL 18, 792-803
   Full Text »    PDF »
Analysis of Phase of LUCIFERASE Expression Reveals Novel Circadian Quantitative Trait Loci in Arabidopsis.
C. Darrah, B. L. Taylor, K. D. Edwards, P. E. Brown, A. Hall, and H. G. McWatters (2006)
Plant Physiology 140, 1464-1474
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS C Mediates Natural Variation in the High-Temperature Response of the Arabidopsis Circadian Clock.
K. D. Edwards, P. E. Anderson, A. Hall, N. S. Salathia, J. C.W. Locke, J. R. Lynn, M. Straume, J. Q. Smith, and A. J. Millar (2006)
PLANT CELL 18, 639-650
   Abstract »    Full Text »    PDF »
Evolution of a Length Polymorphism in the Human PER3 Gene, a Component of the Circadian System.
N. A. Nadkarni, M. E. Weale, M. von Schantz, and M. G. Thomas (2005)
J Biol Rhythms 20, 490-499
   Abstract »    PDF »
The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley.
A. Turner, J. Beales, S. Faure, R. P. Dunford, and D. A. Laurie (2005)
Science 310, 1031-1034
   Abstract »    Full Text »    PDF »
Vernalization sensitivity in Arabidopsis thaliana (Brassicaceae): the effects of latitude and FLC variation.
J. R. Stinchcombe, A. L. Caicedo, R. Hopkins, C. Mays, E. W. Boyd, M. D. Purugganan, and J. Schmitt (2005)
Am. J. Botany 92, 1701-1707
   Abstract »    Full Text »    PDF »
Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage.
A. N. Dodd, N. Salathia, A. Hall, E. Kevei, R. Toth, F. Nagy, J. M. Hibberd, A. J. Millar, and A. A. R. Webb (2005)
Science 309, 630-633
   Abstract »    Full Text »    PDF »
FRIGIDA-Independent Variation in Flowering Time of Natural Arabidopsis thaliana Accessions.
J. D. Werner, J. O. Borevitz, N. H. Uhlenhaut, J. R. Ecker, J. Chory, and D. Weigel (2005)
Genetics 170, 1197-1207
   Abstract »    Full Text »    PDF »
Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis.
S. L. Harmer and S. A. Kay (2005)
PLANT CELL 17, 1926-1940
   Abstract »    Full Text »    PDF »
Natural Allelic Variation in the Temperature-Compensation Mechanisms of the Arabidopsis thaliana Circadian Clock.
K. D. Edwards, J. R. Lynn, P. Gyula, F. Nagy, and A. J. Millar (2005)
Genetics 170, 387-400
   Abstract »    Full Text »    PDF »
Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs).
T. Mizuno and N. Nakamichi (2005)
Plant Cell Physiol. 46, 677-685
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana.
N. Nakamichi, M. Kita, S. Ito, T. Yamashino, and T. Mizuno (2005)
Plant Cell Physiol. 46, 686-698
   Abstract »    Full Text »    PDF »
The Arabidopsis Pseudo-response Regulators, PRR5 and PRR7, Coordinately Play Essential Roles for Circadian Clock Function.
N. Nakamichi, M. Kita, S. Ito, E. Sato, T. Yamashino, and T. Mizuno (2005)
Plant Cell Physiol. 46, 609-619
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock.
P. A. Salome and C. R. McClung (2005)
PLANT CELL 17, 791-803
   Abstract »    Full Text »    PDF »
New insights into plant development in New England.
L. Dolan and J. A. Langdale (2004)
Development 131, 5215-5220
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana Clock.
P. A. Salome and C. R. McClung (2004)
J Biol Rhythms 19, 425-435
   Abstract »    PDF »
Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis.
M. Yasuhara, S. Mitsui, H. Hirano, R. Takanabe, Y. Tokioka, N. Ihara, A. Komatsu, M. Seki, K. Shinozaki, and T. Kiyosue (2004)
J. Exp. Bot. 55, 2015-2027
   Abstract »    Full Text »    PDF »
Circadian-Controlled Basic/Helix-Loop-Helix Factor, PIL6, Implicated in Light-Signal Transduction in Arabidopsis thaliana.
T. Fujimori, T. Yamashino, T. Kato, and T. Mizuno (2004)
Plant Cell Physiol. 45, 1078-1086
   Abstract »    Full Text »    PDF »
Characterization of Circadian-Associated APRR3 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana.
M. Murakami, T. Yamashino, and T. Mizuno (2004)
Plant Cell Physiol. 45, 645-650
   Abstract »    Full Text »    PDF »
Photoperiodism in Neurospora Crassa.
Y. Tan, M. Merrow, and T. Roenneberg (2004)
J Biol Rhythms 19, 135-143
   Abstract »    PDF »
CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis.
X. Daniel, S. Sugano, and E. M. Tobin (2004)
PNAS 101, 3292-3297
   Abstract »    Full Text »    PDF »
Input signals to the plant circadian clock.
A. J. Millar (2004)
J. Exp. Bot. 55, 277-283
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882