Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 302 (5648): 1227-1231

Copyright © 2003 by the American Association for the Advancement of Science

A Genetic Screen in Drosophila for Metastatic Behavior

Raymond A. Pagliarini, and Tian Xu*

Abstract: A genetic screen was designed in Drosophila to interrogate its genome for mutations sufficient to cause noninvasive tumors of the eye disc to invade neighboring or distant tissues. We found that cooperation between oncogenic RasV12 expression and inactivation of any one of a number of genes affecting cell polarity leads to metastatic behavior, including basement membrane degradation, loss of E-cadherin expression, migration, invasion, and secondary tumor formation. Inactivation of these cell polarity genes cannot drive metastatic behavior alone or in combination with other tumor-initiating alterations. These findings suggest that the oncogenic background of tissues makes a distinct contribution toward metastatic development.

Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.

* To whom correspondence should be addressed. E-mail: tian.xu{at}yale.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Drosophila immune response against Ras-induced overgrowth.
T. Hauling, R. Krautz, R. Markus, A. Volkenhoff, L. Kucerova, and U. Theopold (2014)
Biology Open 3, 250-260
   Abstract »    Full Text »    PDF »
Socializing with MYC: Cell Competition in Development and as a Model for Premalignant Cancer.
L. A. Johnston (2014)
Cold Spring Harb Perspect Med 4, a014274
   Abstract »    Full Text »    PDF »
Oncogenic mutations produce similar phenotypes in Drosophila tissues of diverse origins.
S. Stickel and T. T. Su (2014)
Biology Open 3, 201-209
   Abstract »    Full Text »    PDF »
Understanding Lunasin's biology and potential as a cancer therapeutic by utilizing Drosophila genetics.
G. Jones and A. Srivastava (2014)
Experimental Biology and Medicine
   Abstract »    Full Text »    PDF »
Cell competition: how to eliminate your neighbours.
M. Amoyel and E. A. Bach (2014)
Development 141, 988-1000
   Abstract »    Full Text »    PDF »
Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids.
M. Linch, M. Sanz-Garcia, C. Rosse, P. Riou, N. Peel, C. D. Madsen, E. Sahai, J. Downward, A. Khwaja, C. Dillon, et al. (2014)
Carcinogenesis 35, 396-406
   Abstract »    Full Text »    PDF »
Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4.
J. I. Partanen, T. A. Tervonen, and J. Klefstrom (2013)
Phil Trans R Soc B 368, 20130111
   Abstract »    Full Text »    PDF »
Epithelial neoplasia in Drosophila entails switch to primitive cell states.
S. J. Khan, A. Bajpai, M. A. Alam, R. P. Gupta, S. Harsh, R. K. Pandey, S. Goel-Bhattacharya, A. Nigam, A. Mishra, and P. Sinha (2013)
PNAS 110, E2163-E2172
   Abstract »    Full Text »    PDF »
Elevated expression of the V-ATPase C subunit triggers JNK-dependent cell invasion and overgrowth in a Drosophila epithelium.
A. G. Petzoldt, E. M. Gleixner, A. Fumagalli, T. Vaccari, and M. Simons (2013)
Dis. Model. Mech. 6, 689-700
   Abstract »    Full Text »    PDF »
In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling.
P. Khoo, K. Allan, L. Willoughby, A. M. Brumby, and H. E. Richardson (2013)
Dis. Model. Mech. 6, 661-678
   Abstract »    Full Text »    PDF »
An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery.
L. F. Willoughby, T. Schlosser, S. A. Manning, J. P. Parisot, I. P. Street, H. E. Richardson, P. O. Humbert, and A. M. Brumby (2013)
Dis. Model. Mech. 6, 521-529
   Abstract »    Full Text »    PDF »
The actin cross-linker Filamin/Cheerio mediates tumor malignancy downstream of JNK signaling.
E. Kulshammer and M. Uhlirova (2013)
J. Cell Sci. 126, 927-938
   Abstract »    Full Text »    PDF »
Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila.
M. Enomoto and T. Igaki (2013)
EMBO Rep. 14, 65-72
   Abstract »    Full Text »    PDF »
Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia.
A. Dekanty, L. Barrio, M. Muzzopappa, H. Auer, and M. Milan (2012)
PNAS 109, 20549-20554
   Abstract »    Full Text »    PDF »
On the Role of PDZ Domain-Encoding Genes in Drosophila Border Cell Migration.
G. Aranjuez, E. Kudlaty, M. S. Longworth, and J. A. McDonald (2012)
g3 2, 1379-1391
   Abstract »    Full Text »    PDF »
Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model.
H. Herranz, X. Hong, N. T. Hung, P. M. Voorhoeve, and S. M. Cohen (2012)
Genes & Dev. 26, 1602-1611
   Abstract »    Full Text »    PDF »
Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila.
S. K. Pallavi, D. M. Ho, C. Hicks, L. Miele, and S. Artavanis-Tsakonas (2012)
EMBO J. 31, 2895-2907
   Abstract »    Full Text »    PDF »
Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium.
A. J. Ewald, R. J. Huebner, H. Palsdottir, J. K. Lee, M. J. Perez, D. M. Jorgens, A. N. Tauscher, K. J. Cheung, Z. Werb, and M. Auer (2012)
J. Cell Sci. 125, 2638-2654
   Abstract »    Full Text »    PDF »
Tumor suppressor function of Liver kinase B1 (Lkb1) is linked to regulation of epithelial integrity.
J. I. Partanen, T. A. Tervonen, M. Myllynen, E. Lind, M. Imai, P. Katajisto, G. J. P. Dijkgraaf, P. E. Kovanen, T. P. Makela, Z. Werb, et al. (2012)
PNAS 109, E388-E397
   Abstract »    Full Text »    PDF »
Tumor suppression by cell competition through regulation of the Hippo pathway.
C.-L. Chen, M. C. Schroeder, M. Kango-Singh, C. Tao, and G. Halder (2012)
PNAS 109, 484-489
   Abstract »    Full Text »    PDF »
Modeling tumor invasion and metastasis in Drosophila.
W. O. Miles, N. J. Dyson, and J. A. Walker (2011)
Dis. Model. Mech. 4, 753-761
   Abstract »    Full Text »    PDF »
Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery.
U. B. Pandey and C. D. Nichols (2011)
Pharmacol. Rev. 63, 411-436
   Abstract »    Full Text »    PDF »
Identification of Novel Ras-Cooperating Oncogenes in Drosophila melanogaster: A RhoGEF/Rho-Family/JNK Pathway Is a Central Driver of Tumorigenesis.
A. M. Brumby, K. R. Goulding, T. Schlosser, S. Loi, R. Galea, P. Khoo, J. E. Bolden, T. Aigaki, P. O. Humbert, and H. E. Richardson (2011)
Genetics 188, 105-125
   Abstract »    Full Text »    PDF »
Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells.
D. M. Vallejo, E. Caparros, and M. Dominguez (2011)
EMBO J. 30, 756-769
   Abstract »    Full Text »    PDF »
Drosophila melanogaster as a model for human intestinal infection and pathology.
Y. Apidianakis and L. G. Rahme (2011)
Dis. Model. Mech. 4, 21-30
   Abstract »    Full Text »    PDF »
Stability and Function of Mammalian Lethal Giant Larvae-1 Oncoprotein Are Regulated by the Scaffolding Protein RanBPM.
B. Suresh, S. Ramakrishna, Y.-S. Kim, S.-M. Kim, M.-S. Kim, and K.-H. Baek (2010)
J. Biol. Chem. 285, 35340-35349
   Abstract »    Full Text »    PDF »
A tumor-suppressing mechanism in Drosophila involving cell competition and the Hippo pathway.
J. Menendez, A. Perez-Garijo, M. Calleja, and G. Morata (2010)
PNAS 107, 14651-14656
   Abstract »    Full Text »    PDF »
Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila.
C. Chi, H. Zhu, M. Han, Y. Zhuang, X. Wu, and T. Xu (2010)
J. Biol. Chem. 285, 21817-21823
   Abstract »    Full Text »    PDF »
P115 RhoGEF and microtubules decide the direction apoptotic cells extrude from an epithelium.
G. Slattum, K. M. McGee, and J. Rosenblatt (2009)
J. Cell Biol. 186, 693-702
   Abstract »    Full Text »    PDF »
The Hippo pathway regulates apical-domain size independently of its growth-control function.
A. Genevet, C. Polesello, K. Blight, F. Robertson, L. M. Collinson, F. Pichaud, and N. Tapon (2009)
J. Cell Sci. 122, 2360-2370
   Abstract »    Full Text »    PDF »
Aberrant Splicing of Hugl-1 Is Associated with Hepatocellular Carcinoma Progression.
X. Lu, X. Feng, X. Man, G. Yang, L. Tang, D. Du, F. Zhang, H. Yuan, Q. Huang, Z. Zhang, et al. (2009)
Clin. Cancer Res. 15, 3287-3296
   Abstract »    Full Text »    PDF »
Regeneration, Stem Cells, and the Evolution of Tumor Suppression.
B.J. Pearson and A. Sanchez Alvarado (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
An innate immune response of blood cells to tumors and tissue damage in Drosophila.
J. C. Pastor-Pareja, M. Wu, and T. Xu (2008)
Dis. Model. Mech. 1, 144-154
   Abstract »    Full Text »    PDF »
The expanding role of mouse genetics for understanding human biology and disease.
D. Nguyen and T. Xu (2008)
Dis. Model. Mech. 1, 56-66
   Abstract »    Full Text »    PDF »
Basolateral Junctions Utilize Warts Signaling to Control Epithelial-Mesenchymal Transition and Proliferation Crucial For Migration and Invasion of Drosophila Ovarian Epithelial Cells.
M. Zhao, P. Szafranski, C. A. Hall, and S. Goode (2008)
Genetics 178, 1947-1971
   Abstract »    Full Text »    PDF »
Differing Src Signaling Levels Have Distinct Outcomes in Drosophila.
M. Vidal, S. Warner, R. Read, and R. L. Cagan (2007)
Cancer Res. 67, 10278-10285
   Abstract »    Full Text »    PDF »
A Mosaic Genetic Screen for Drosophila Neoplastic Tumor Suppressor Genes Based on Defective Pupation.
L. Menut, T. Vaccari, H. Dionne, J. Hill, G. Wu, and D. Bilder (2007)
Genetics 177, 1667-1677
   Abstract »    Full Text »    PDF »
Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization.
J. I. Partanen, A. I. Nieminen, T. P. Makela, and J. Klefstrom (2007)
PNAS 104, 14694-14699
   Abstract »    Full Text »    PDF »
Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion.
A. Srivastava, J. C. Pastor-Pareja, T. Igaki, R. Pagliarini, and T. Xu (2007)
PNAS 104, 2721-2726
   Abstract »    Full Text »    PDF »
JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila.
M. Uhlirova and D. Bohmann (2006)
EMBO J. 25, 5294-5304
   Abstract »    Full Text »    PDF »
A Drosophila model of the rhabdomyosarcoma initiator PAX7-FKHR.
R. L. Galindo, J. A. Allport, and E. N. Olson (2006)
PNAS 103, 13439-13444
   Abstract »    Full Text »    PDF »
Characterization of Drosophila mini-me, a Gene Required for Cell Proliferation and Survival.
C. Jones, R. Reifegerste, and K. Moses (2006)
Genetics 173, 793-808
   Abstract »    Full Text »    PDF »
Mucosal prolapse in the pathogenesis of Peutz-Jeghers polyposis..
M Jansen, W W J de Leng, A F Baas, H Myoshi, L Mathus-Vliegen, M M Taketo, H Clevers, F M Giardiello, and G J A Offerhaus (2006)
Gut 55, 1-5
   Abstract »    Full Text »    PDF »
The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin.
Y. Qin, C. Capaldo, B. M. Gumbiner, and I. G. Macara (2005)
J. Cell Biol. 171, 1061-1071
   Abstract »    Full Text »    PDF »
A hybrid machine-learning approach for segmentation of protein localization data.
P. M. Kasson, J. B. Huppa, M. M. Davis, and A. T. Brunger (2005)
Bioinformatics 21, 3778-3786
   Abstract »    Full Text »    PDF »
Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model.
M. Uhlirova, H. Jasper, and D. Bohmann (2005)
PNAS 102, 13123-13128
   Abstract »    Full Text »    PDF »
Atypical PKC{iota} contributes to poor prognosis through loss of apical-basal polarity and Cyclin E overexpression in ovarian cancer.
A. M. Eder, X. Sui, D. G. Rosen, L. K Nolden, K. W. Cheng, J. P. Lahad, M. Kango-Singh, K. H. Lu, C. L. Warneke, E. N. Atkinson, et al. (2005)
PNAS 102, 12519-12524
   Abstract »    Full Text »    PDF »
Zebrafish penner/lethal giant larvae 2 functions in hemidesmosome formation, maintenance of cellular morphology and growth regulation in the developing basal epidermis.
M. Sonawane, Y. Carpio, R. Geisler, H. Schwarz, H.-M. Maischein, and C. Nuesslein-Volhard (2005)
Development 132, 3255-3265
   Abstract »    Full Text »    PDF »
The Calpain System Is Involved in the Constitutive Regulation of {beta}-Catenin Signaling Functions.
R. Benetti, T. Copetti, S. Dell'Orso, E. Melloni, C. Brancolini, M. Monte, and C. Schneider (2005)
J. Biol. Chem. 280, 22070-22080
   Abstract »    Full Text »    PDF »
Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble.
J. Zeitler, C. P. Hsu, H. Dionne, and D. Bilder (2004)
J. Cell Biol. 167, 1137-1146
   Abstract »    Full Text »    PDF »
Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors.
D. Bilder (2004)
Genes & Dev. 18, 1909-1925
   Abstract »    Full Text »    PDF »
Convergence of Wnt, {beta}-Catenin, and Cadherin Pathways.
W. J. Nelson and R. Nusse (2004)
Science 303, 1483-1487
   Abstract »    Full Text »    PDF »
Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice.
O. Klezovitch, T. E. Fernandez, S. J. Tapscott, and V. Vasioukhin (2004)
Genes & Dev. 18, 559-571
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882