Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 302 (5649): 1368-1373

Copyright © 2003 by the American Association for the Advancement of Science

Targeted Protein Degradation and Synapse Remodeling by an Inducible Protein Kinase

Daniel T. S. Pak*{dagger}, and Morgan Sheng{dagger}

Abstract: Synaptic plasticity involves the reorganization of synapses at the protein and the morphological levels. Here, we report activity-dependent remodeling of synapses by serum-inducible kinase (SNK). SNK was induced in hippocampal neurons by synaptic activity and was targeted to dendritic spines. SNK bound to and phosphorylated spine-associated Rap guanosine triphosphatase activating protein (SPAR), a postsynaptic actin regulatory protein, leading to degradation of SPAR. Induction of SNK in hippocampal neurons eliminated SPAR protein, depleted postsynaptic density–95 and Bassoon clusters, and caused loss of mature dendritic spines. These results implicate SNK as a mediator of activity-dependent change in the molecular composition and morphology of synapses.

Picower Center for Learning and Memory, RIKEN Massachusetts Institute of Technology (MIT) Neuroscience Research Center, Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.

Back to Top

* Present address: Department of Pharmacology, Georgetown University, Washington, DC 20057, USA.

{dagger} To whom correspondence should be addressed. Email: dtp6{at}georgetown.edu (D.T.S.P.); msheng{at}mit.edu (M.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dendritic Spines: The Locus of Structural and Functional Plasticity.
C. Sala and M. Segal (2014)
Physiol Rev 94, 141-188
   Abstract »    Full Text »    PDF »
Opposing Action of Nuclear Factor {kappa}B and Polo-like Kinases Determines a Homeostatic End Point for Excitatory Synaptic Adaptation.
A. B. Mihalas, Y. Araki, R. L. Huganir, and M. K. Meffert (2013)
J. Neurosci. 33, 16490-16501
   Abstract »    Full Text »    PDF »
Polo-like kinase 2 regulates selective autophagic {alpha}-synuclein clearance and suppresses its toxicity in vivo.
A. Oueslati, B. L. Schneider, P. Aebischer, and H. A. Lashuel (2013)
PNAS 110, E3945-E3954
   Abstract »    Full Text »    PDF »
Silencing synuclein at the synapse with PLK2.
B. D. Looyenga and P. Brundin (2013)
PNAS 110, 16293-16294
   Full Text »    PDF »
An Essential Role for Inhibitor-2 Regulation of Protein Phosphatase-1 in Synaptic Scaling.
B. A. Siddoway, H. F. Altimimi, H. Hou, R. S. Petralia, B. Xu, D. Stellwagen, and H. Xia (2013)
J. Neurosci. 33, 11206-11211
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin complex 1 activation negatively regulates Polo-like kinase 2-mediated homeostatic compensation following neonatal seizures.
H. Sun, B. Kosaras, P. M. Klein, and F. E. Jensen (2013)
PNAS 110, 5199-5204
   Abstract »    Full Text »    PDF »
{alpha}-Synuclein disrupts stress signaling by inhibiting polo-like kinase Cdc5/Plk2.
S. Wang, B. Xu, L.-C. Liou, Q. Ren, S. Huang, Y. Luo, Z. Zhang, and S. N. Witt (2012)
PNAS 109, 16119-16124
   Abstract »    Full Text »    PDF »
The Postsynaptic Organization of Synapses.
M. Sheng and E. Kim (2011)
Cold Spring Harb Perspect Biol 3, a005678
   Abstract »    Full Text »    PDF »
MAGUKs, Synaptic Development, and Synaptic Plasticity.
C.-Y. Zheng, G. K. Seabold, M. Horak, and R. S. Petralia (2011)
Neuroscientist 17, 493-512
   Abstract »    PDF »
Physiological Relevance of Cell Cycle Kinases.
M. Malumbres (2011)
Physiol Rev 91, 973-1007
   Abstract »    Full Text »    PDF »
DGK{iota} regulates presynaptic release during mGluR-dependent LTD.
J. Yang, J. Seo, R. Nair, S. Han, S. Jang, K. Kim, K. Han, S. K. Paik, J. Choi, S. Lee, et al. (2011)
EMBO J. 30, 165-180
   Abstract »    Full Text »    PDF »
Regulation of Dendritic Spines, Spatial Memory, and Embryonic Development by the TANC Family of PSD-95-Interacting Proteins.
S. Han, J. Nam, Y. Li, S. Kim, S.-H. Cho, Y. S. Cho, S.-Y. Choi, J. Choi, K. Han, Y. Kim, et al. (2010)
J. Neurosci. 30, 15102-15112
   Abstract »    Full Text »    PDF »
Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins.
D. Oh, S. Han, J. Seo, J.-R. Lee, J. Choi, J. Groffen, K. Kim, Y. S. Cho, H.-S. Choi, H. Shin, et al. (2010)
J. Neurosci. 30, 14134-14144
   Abstract »    Full Text »    PDF »
The ubiquitin-proteasome pathway and synaptic plasticity.
A. N. Hegde (2010)
Learn. Mem. 17, 314-327
   Abstract »    Full Text »    PDF »
A Role for the Ubiquitin-Proteasome System in Activity-Dependent Presynaptic Silencing.
X. Jiang, P. E. Litkowski, A. A. Taylor, Y. Lin, B. J. Snider, and K. L. Moulder (2010)
J. Neurosci. 30, 1798-1809
   Abstract »    Full Text »    PDF »
Phosphorylation of Synucleins by Members of the Polo-like Kinase Family.
M. K. Mbefo, K. E. Paleologou, A. Boucharaba, A. Oueslati, H. Schell, M. Fournier, D. Olschewski, G. Yin, M. Zweckstetter, E. Masliah, et al. (2010)
J. Biol. Chem. 285, 2807-2822
   Abstract »    Full Text »    PDF »
The Function of Activity-Regulated Genes in the Nervous System.
S. Loebrich and E. Nedivi (2009)
Physiol Rev 89, 1079-1103
   Abstract »    Full Text »    PDF »
Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II.
S. N. Djakovic, L. A. Schwarz, B. Barylko, G. N. DeMartino, and G. N. Patrick (2009)
J. Biol. Chem. 284, 26655-26665
   Abstract »    Full Text »    PDF »
Polo-like kinases mediate cell survival in mitochondrial dysfunction.
T. Matsumoto, P.-y. Wang, W. Ma, H. J. Sung, S. Matoba, and P. M. Hwang (2009)
PNAS 106, 14542-14546
   Abstract »    Full Text »    PDF »
Transducing Neuronal Activity into Dendritic Spine Morphology: New Roles for p38 MAP Kinase and N-cadherin.
H. Sugiura, H. Tanaka, S. Yasuda, T. Takemiya, and K. Yamagata (2009)
Neuroscientist 15, 90-104
   Abstract »    PDF »
Polo-like Kinase 2 (PLK2) Phosphorylates {alpha}-Synuclein at Serine 129 in Central Nervous System.
K. J. Inglis, D. Chereau, E. F. Brigham, S.-S. Chiou, S. Schobel, N. L. Frigon, M. Yu, R. J. Caccavello, S. Nelson, R. Motter, et al. (2009)
J. Biol. Chem. 284, 2598-2602
   Abstract »    Full Text »    PDF »
Think locally: control of ubiquitin-dependent protein degradation in neurons.
A. Segref and T. Hoppe (2009)
EMBO Rep. 10, 44-50
   Abstract »    Full Text »    PDF »
Regulation of Postsynaptic RapGAP SPAR by Polo-like Kinase 2 and the SCF{beta}-TRCP Ubiquitin Ligase in Hippocampal Neurons.
X. L. Ang, D. P. Seeburg, M. Sheng, and J. W. Harper (2008)
J. Biol. Chem. 283, 29424-29432
   Abstract »    Full Text »    PDF »
Constitutively Active Rap2 Transgenic Mice Display Fewer Dendritic Spines, Reduced Extracellular Signal-Regulated Kinase Signaling, Enhanced Long-Term Depression, and Impaired Spatial Learning and Fear Extinction.
J. Ryu, K. Futai, M. Feliu, R. Weinberg, and M. Sheng (2008)
J. Neurosci. 28, 8178-8188
   Abstract »    Full Text »    PDF »
Brain-derived Neurotrophic Factor-Tropomyosin-related Kinase B Signaling Contributes to Activity-dependent Changes in Synaptic Proteins.
J.-M. Jia, Q. Chen, Y. Zhou, S. Miao, J. Zheng, C. Zhang, and Z.-Q. Xiong (2008)
J. Biol. Chem. 283, 21242-21250
   Abstract »    Full Text »    PDF »
Activity-Induced Polo-Like Kinase 2 Is Required for Homeostatic Plasticity of Hippocampal Neurons during Epileptiform Activity.
D. P. Seeburg and M. Sheng (2008)
J. Neurosci. 28, 6583-6591
   Abstract »    Full Text »    PDF »
Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6.
Y. Nishi, E. Rogers, S. M. Robertson, and R. Lin (2008)
Development 135, 687-697
   Abstract »    Full Text »    PDF »
Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle.
K. Mitko, S. E Ulbrich, H. Wenigerkind, F. Sinowatz, H. Blum, E. Wolf, and S. Bauersachs (2008)
Reproduction 135, 225-240
   Abstract »    Full Text »    PDF »
The EphA4 Receptor Regulates Neuronal Morphology through SPAR-Mediated Inactivation of Rap GTPases.
M. Richter, K. K. Murai, C. Bourgin, D. T. Pak, and E. B. Pasquale (2007)
J. Neurosci. 27, 14205-14215
   Abstract »    Full Text »    PDF »
Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function.
J. J. Yi and M. D. Ehlers (2007)
Pharmacol. Rev. 59, 14-39
   Abstract »    Full Text »    PDF »
Actinfilin Is a Cul3 Substrate Adaptor, Linking GluR6 Kainate Receptor Subunits to the Ubiquitin-Proteasome Pathway.
G. D. Salinas, L. A. C. Blair, L. A. Needleman, J. D. Gonzales, Y. Chen, M. Li, J. D. Singer, and J. Marshall (2006)
J. Biol. Chem. 281, 40164-40173
   Abstract »    Full Text »    PDF »
Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity.
D. Yan, L. Guo, and Y. Wang (2006)
J. Cell Biol. 174, 415-424
   Abstract »    Full Text »    PDF »
Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus.
D. T. Theodosis, A. Trailin, and D. A. Poulain (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R1175-R1182
   Abstract »    Full Text »    PDF »
Regulation of the Neuronal Proteasome by Zif268 (Egr1).
A. B. James, A.-M. Conway, and B. J. Morris (2006)
J. Neurosci. 26, 1624-1634
   Abstract »    Full Text »    PDF »
Ubiquitylation and Degradation of Serum-inducible Kinase by hVPS18, a RING-H2 Type Ubiquitin Ligase.
S. Yogosawa, S. Hatakeyama, K. I. Nakayama, H. Miyoshi, S. Kohsaka, and C. Akazawa (2005)
J. Biol. Chem. 280, 41619-41627
   Abstract »    Full Text »    PDF »
The origin recognition core complex regulates dendrite and spine development in postmitotic neurons.
Z. Huang, K. Zang, and L. F. Reichardt (2005)
J. Cell Biol. 170, 527-535
   Abstract »    Full Text »    PDF »
Dendrite development: a surprising origin.
M. D. Ehlers (2005)
J. Cell Biol. 170, 517-519
   Abstract »    Full Text »    PDF »
Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans.
A. Gottschalk, R. B. Almedom, T. Schedletzky, S. D. Anderson, J. R. Yates III, and W. R. Schafer (2005)
EMBO J. 24, 2566-2578
   Abstract »    Full Text »    PDF »
Collaboration of PSD-Zip70 with Its Binding Partner, SPAR, in Dendritic Spine Maturity.
H. Maruoka, D. Konno, K. Hori, and K. Sobue (2005)
J. Neurosci. 25, 1421-1430
   Abstract »    Full Text »    PDF »
Regulation of Dendritic Spine Morphogenesis by Insulin Receptor Substrate 53, a Downstream Effector of Rac1 and Cdc42 Small GTPases.
J. Choi, J. Ko, B. Racz, A. Burette, J.-R. Lee, S. Kim, M. Na, H. W. Lee, K. Kim, R. J. Weinberg, et al. (2005)
J. Neurosci. 25, 869-879
   Abstract »    Full Text »    PDF »
Facilitation of L-Type Ca2+ Channels in Dendritic Spines by Activation of {beta}2 Adrenergic Receptors.
T. M. Hoogland and P. Saggau (2004)
J. Neurosci. 24, 8416-8427
   Abstract »    Full Text »    PDF »
2003: Signaling Breakthroughs of the Year.
E. M. Adler, N. R. Gough, and L. B. Ray (2004)
Sci. STKE 2004, eg1
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: SPARring with Spines.
G. Meyer and N. Brose (2003)
Science 302, 1341-1344
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882