Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 302 (5649): 1408-1412

Copyright © 2003 by the American Association for the Advancement of Science

Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus

Shun Yamaguchi,1 Hiromi Isejima,1,2 Takuya Matsuo,1,2 Ryusuke Okura,1 Kazuhiro Yagita,1 Masaki Kobayashi,3 Hitoshi Okamura1*

Abstract: Individual cellular clocks in the suprachiasmatic nucleus (SCN), the circadian center, are integrated into a stable and robust pacemaker with a period length of about 24 hours. We used real-time analysis of gene expression to show synchronized rhythms of clock gene transcription across hundreds of neurons within the mammalian SCN in organotypic slice culture. Differentially phased neuronal clocks are topographically arranged across the SCN. A protein synthesis inhibitor set all cell clocks to the same initial phase and, after withdrawal, intrinsic interactions among cell clocks reestablished the stable program of gene expression across the assemblage. Na+-dependent action potentials contributed to establishing cellular synchrony and maintaining spontaneous oscillation across the SCN.

1 Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
2 Department of Physics, Informatics, and Biology, Yamaguchi University, Yamaguchi 753-8512, Japan.
3 Department of Electronics, Tohoku Institute of Technology, Sendai 982-8577, Japan.

* To whom correspondence should be addressed. E-mail: okamurah{at}

Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation.
K. Kotani, I. Yamaguchi, L. Yoshida, Y. Jimbo, and G. B. Ermentrout (2014)
J R Soc Interface 11, 20140058
   Abstract »    Full Text »    PDF »
Coupling governs entrainment range of circadian clocks.
U. Abraham, A. E. Granada, P. O. Westermark, M. Heine, A. Kramer, and H. Herzel (2014)
Mol Syst Biol 6, 438
   Abstract »    Full Text »    PDF »
Dynamics of single-cell gene expression.
D. Longo and J. Hasty (2014)
Mol Syst Biol 2, 64
   Abstract »    Full Text »    PDF »
Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks.
J. Rougemont and F. Naef (2014)
Mol Syst Biol 3, 93
   Abstract »    Full Text »    PDF »
Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria.
F. Naef (2014)
Mol Syst Biol 1, 2005.0019
   Abstract »    Full Text »    PDF »
A mechanism for robust circadian timekeeping via stoichiometric balance.
J. K. Kim and D. B. Forger (2014)
Mol Syst Biol 8, 630
   Abstract »    Full Text »    PDF »
The Tau Mutation of Casein Kinase 1{epsilon} Sets the Period of the Mammalian Pacemaker via Regulation of Period1 or Period2 Clock Proteins.
E. S. Maywood, J. E. Chesham, N. J. Smyllie, and M. H. Hastings (2014)
J Biol Rhythms 29, 110-118
   Abstract »    Full Text »    PDF »
The Drosophila Circadian Clock Is a Variably Coupled Network of Multiple Peptidergic Units.
Z. Yao and O. T. Shafer (2014)
Science 343, 1516-1520
   Abstract »    Full Text »    PDF »
Multilevel regulation: Controlling BK channels in central clock neurons.
L. D. Plant (2013)
J. Gen. Physiol. 142, 579-583
   Full Text »    PDF »
A Single-Cell Bioluminescence Imaging System for Monitoring Cellular Gene Expression in a Plant Body.
T. Muranaka, S. Kubota, and T. Oyama (2013)
Plant Cell Physiol. 54, 2085-2093
   Abstract »    Full Text »    PDF »
Mice Genetically Deficient in Vasopressin V1a and V1b Receptors Are Resistant to Jet Lag.
Y. Yamaguchi, T. Suzuki, Y. Mizoro, H. Kori, K. Okada, Y. Chen, J.-M. Fustin, F. Yamazaki, N. Mizuguchi, J. Zhang, et al. (2013)
Science 342, 85-90
   Abstract »    Full Text »    PDF »
Socially synchronized circadian oscillators.
G. Bloch, E. D. Herzog, J. D. Levine, and W. J. Schwartz (2013)
Proc R Soc B 280, 20130035
   Abstract »    Full Text »    PDF »
Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
E. S. Maywood, L. Drynan, J. E. Chesham, M. D. Edwards, H. Dardente, J.-M. Fustin, D. G. Hazlerigg, J. S. O'Neill, G. F. Codner, N. J. Smyllie, et al. (2013)
PNAS 110, 9547-9552
   Abstract »    Full Text »    PDF »
Fibroblast PER2 Circadian Rhythmicity Depends on Cell Density.
T. Noguchi, L. L. Wang, and D. K. Welsh (2013)
J Biol Rhythms 28, 183-192
   Abstract »    Full Text »    PDF »
Boosting circadian rhythms with lighting: A model driven approach.
A. Barroso and B. den Brinker (2013)
Lighting Research and Technology 45, 197-216
   Abstract »    PDF »
Mis-expression of the BK K+ channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior.
J. R. Montgomery, J. P. Whitt, B. N. Wright, M. H. Lai, and A. L. Meredith (2013)
Am J Physiol Cell Physiol 304, C299-C311
   Abstract »    Full Text »    PDF »
Odor Is a Time Cue for Circadian Behavior.
U. Abraham, M. Saleh, and A. Kramer (2013)
J Biol Rhythms 28, 26-37
   Abstract »    Full Text »    PDF »
Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus.
R. Enoki, S. Kuroda, D. Ono, M. T. Hasan, T. Ueda, S. Honma, and K.-i. Honma (2012)
PNAS 109, 21498-21503
   Abstract »    Full Text »    PDF »
Cry1-/- Circadian Rhythmicity Depends on SCN Intercellular Coupling.
J. A. Evans, H. Pan, A. C. Liu, and D. K. Welsh (2012)
J Biol Rhythms 27, 443-452
   Abstract »    Full Text »    PDF »
Tissue-Specific Interaction of Per1/2 and Dec2 in the Regulation of Fibroblast Circadian Rhythms.
A. H. Tsang, C. Sanchez-Moreno, B. Bode, M. J. Rossner, M. Garaulet, and H. Oster (2012)
J Biol Rhythms 27, 478-489
   Abstract »    Full Text »    PDF »
Serotonergic Integration of Circadian Clock and Ultradian Sleep-Wake Cycles.
H. Miyamoto, E. Nakamaru-Ogiso, K. Hamada, and T. K. Hensch (2012)
J. Neurosci. 32, 14794-14803
   Abstract »    Full Text »    PDF »
Cellular Bioluminescence Imaging.
D. K. Welsh and T. Noguchi (2012)
Cold Spring Harb Protoc 2012, pdb.top070607
   Abstract »    Full Text »    PDF »
Period Coding of Bmal1 Oscillators in the Suprachiasmatic Nucleus.
J. Myung, S. Hong, F. Hatanaka, Y. Nakajima, E. De Schutter, and T. Takumi (2012)
J. Neurosci. 32, 8900-8918
   Abstract »    Full Text »    PDF »
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.
B. Wenden, D. L. K. Toner, S. K. Hodge, R. Grima, and A. J. Millar (2012)
PNAS 109, 6757-6762
   Abstract »    Full Text »    PDF »
NaV1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms.
S. Han, F. H. Yu, M. D. Schwartz, J. D. Linton, M. M. Bosma, J. B. Hurley, W. A. Catterall, and H. O. de la Iglesia (2012)
PNAS 109, E368-E377
   Abstract »    Full Text »    PDF »
Transcription-Based Oscillator Model for Light-Induced Splitting as Antiphase Circadian Gene Expression in the Suprachiasmatic Nuclei.
S. Schroder, E. D. Herzog, and I. Z. Kiss (2012)
J Biol Rhythms 27, 79-90
   Abstract »    Full Text »    PDF »
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.
E. S. Maywood, J. E. Chesham, J. A. O'Brien, and M. H. Hastings (2011)
PNAS 108, 14306-14311
   Abstract »    Full Text »    PDF »
Phase-Resetting Sensitivity of the Suprachiasmatic Nucleus and Oscillator Amplitude: Reply to Letter by Ruby.
E. D. Buhr, S.-H. Yoo, and J. S. Takahashi (2011)
J Biol Rhythms 26, 371-373
   Abstract »    PDF »
Effects of Vasoactive Intestinal Peptide Genotype on Circadian Gene Expression in the Suprachiasmatic Nucleus and Peripheral Organs.
D. H. Loh, J. M. Dragich, T. Kudo, A. M. Schroeder, T. J. Nakamura, J. A. Waschek, G. D. Block, and C. S. Colwell (2011)
J Biol Rhythms 26, 200-209
   Abstract »    PDF »
Cyclic AMP Signaling Control of Action Potential Firing Rate and Molecular Circadian Pacemaking in the Suprachiasmatic Nucleus.
S. E. Atkinson, E. S. Maywood, J. E. Chesham, C. Wozny, C. S. Colwell, M. H. Hastings, and S. R. Williams (2011)
J Biol Rhythms 26, 210-220
   Abstract »    PDF »
Fast Delayed Rectifier Potassium Current: Critical for Input and Output of the Circadian System.
T. Kudo, D. H. Loh, D. Kuljis, C. Constance, and C. S. Colwell (2011)
J. Neurosci. 31, 2746-2755
   Abstract »    Full Text »    PDF »
Acute Light Exposure Suppresses Circadian Rhythms in Clock Gene Expression.
B. P. Grone, D. Chang, P. Bourgin, V. Cao, R. D. Fernald, H. C. Heller, and N. F. Ruby (2011)
J Biol Rhythms 26, 78-81
   Abstract »    PDF »
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
D. Zwicker, D. K. Lubensky, and P. R. ten Wolde (2010)
PNAS 107, 22540-22545
   Abstract »    Full Text »    PDF »
Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators.
E. D. Buhr, S.-H. Yoo, and J. S. Takahashi (2010)
Science 330, 379-385
   Abstract »    Full Text »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
The Onset of Collective Behavior in Social Amoebae.
T. Gregor, K. Fujimoto, N. Masaki, and S. Sawai (2010)
Science 328, 1021-1025
   Abstract »    Full Text »    PDF »
Synchronization engineering: tuning the phase relationship between dissimilar oscillators using nonlinear feedback.
C. G. Rusin, H. Kori, I. Z. Kiss, and J. L. Hudson (2010)
Phil Trans R Soc A 368, 2189-2204
   Abstract »    Full Text »    PDF »
Reorganization of Suprachiasmatic Nucleus Networks under 24-h LDLD Conditions.
L. Yan, R. Silver, and M. Gorman (2010)
J Biol Rhythms 25, 19-27
   Abstract »    PDF »
Arrhythmic Rats after SCN Lesions and Constant Light Differ in Short Time Scale Regulation of Locomotor Activity.
J. J. Chiesa, T. Cambras, A. R. Carpentieri, and A. Diez-Noguera (2010)
J Biol Rhythms 25, 37-46
   Abstract »    PDF »
Circadian Regulation of A-Type Potassium Currents in the Suprachiasmatic Nucleus.
J. N. Itri, A. M. Vosko, A. Schroeder, J. M. Dragich, S. Michel, and C. S. Colwell (2010)
J Neurophysiol 103, 632-640
   Abstract »    Full Text »    PDF »
Daily Electrical Silencing in the Mammalian Circadian Clock.
M. D. C. Belle, C. O. Diekman, D. B. Forger, and H. D. Piggins (2009)
Science 326, 281-284
   Abstract »    Full Text »    PDF »
Basis of Robustness and Resilience in the Suprachiasmatic Nucleus: Individual Neurons Form Nodes in Circuits that Cycle Daily.
M. P. Butler and R. Silver (2009)
J Biol Rhythms 24, 340-352
   Abstract »    PDF »
Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.
A. B. Webb, N. Angelo, J. E. Huettner, and E. D. Herzog (2009)
PNAS 106, 16493-16498
   Abstract »    Full Text »    PDF »
Does the Morning and Evening Oscillator Model Fit Better for Flies or Mice?.
C. Helfrich-Forster (2009)
J Biol Rhythms 24, 259-270
   Abstract »    PDF »
Ryanodine-Sensitive Intracellular Ca2+ Channels in Rat Suprachiasmatic Nuclei Are Required for Circadian Clock Control of Behavior.
C. Mercado, M. Diaz-Munoz, J. Alamilla, K. Valderrama, V. Morales-Tlalpan, and R. Aguilar-Roblero (2009)
J Biol Rhythms 24, 203-210
   Abstract »    PDF »
Small-World Network Models of Intercellular Coupling Predict Enhanced Synchronization in the Suprachiasmatic Nucleus.
C. Vasalou, E. D. Herzog, and M. A. Henson (2009)
J Biol Rhythms 24, 243-254
   Abstract »    PDF »
The Neuropeptide Pigment-Dispersing Factor Adjusts Period and Phase of Drosophila's Clock.
T. Yoshii, C. Wulbeck, H. Sehadova, S. Veleri, D. Bichler, R. Stanewsky, and C. Helfrich-Forster (2009)
J. Neurosci. 29, 2597-2610
   Abstract »    Full Text »    PDF »
Spatiotemporal Heterogeneity in the Electrical Activity of Suprachiasmatic Nuclei Neurons and their Response to Photoperiod.
T.M. Brown and H.D. Piggins (2009)
J Biol Rhythms 24, 44-54
   Abstract »    PDF »
Increased Coherence of Circadian Rhythms in Mature Fibroblast Cultures.
J. S. O'Neill and M. H. Hastings (2008)
J Biol Rhythms 23, 483-488
   Abstract »    PDF »
A genetic timer through noise-induced stabilization of an unstable state.
M. Turcotte, J. Garcia-Ojalvo, and G. M. Suel (2008)
PNAS 105, 15732-15737
   Abstract »    Full Text »    PDF »
Decline of the Presynaptic Network, Including GABAergic Terminals, in the Aging Suprachiasmatic Nucleus of the Mouse.
M. Palomba, M. Nygard, F. Florenzano, G. Bertini, K. Kristensson, and M. Bentivoglio (2008)
J Biol Rhythms 23, 220-231
   Abstract »    PDF »
cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker.
J. S. O'Neill, E. S. Maywood, J. E. Chesham, J. S. Takahashi, and M. H. Hastings (2008)
Science 320, 949-953
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Is a Functional Component of the Autonomous Circadian System in the Suprachiasmatic Nucleus.
M. Akashi, N. Hayasaka, S. Yamazaki, and K. Node (2008)
J. Neurosci. 28, 4619-4623
   Abstract »    Full Text »    PDF »
Interferon-{gamma} Alters Electrical Activity and Clock Gene Expression in Suprachiasmatic Nucleus Neurons.
Y. Kwak, G. B. Lundkvist, J. Brask, A. Davidson, M. Menaker, K. Kristensson, and G. D. Block (2008)
J Biol Rhythms 23, 150-159
   Abstract »    PDF »
Circadian Behavioral Rhythms in Cry1/Cry2 Double-Deficient Mice Induced by Methamphetamine.
S. Honma, T. Yasuda, A. Yasui, G. T. J. van der Horst, and K.-i. Honma (2008)
J Biol Rhythms 23, 91-94
   PDF »
Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling.
D. A. Bechtold, T. M. Brown, S. M. Luckman, and H. D. Piggins (2008)
Am J Physiol Regulatory Integrative Comp Physiol 294, R344-R351
   Abstract »    Full Text »    PDF »
Pigment Dispersing Factor-Dependent and -Independent Circadian Locomotor Behavioral Rhythms.
V. Sheeba, V. K. Sharma, H. Gu, Y.-T. Chou, D. K. O'Dowd, and T. C. Holmes (2008)
J. Neurosci. 28, 217-227
   Abstract »    Full Text »    PDF »
Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control.
J. Zamborszky, C. I. Hong, and A. Csikasz Nagy (2007)
J Biol Rhythms 22, 542-553
   Abstract »    PDF »
Intracellular Ca2+ Regulates Free-Running Circadian Clock Oscillation In Vivo.
M. C. Harrisingh, Y. Wu, G. A. Lnenicka, and M. N. Nitabach (2007)
J. Neurosci. 27, 12489-12499
   Abstract »    Full Text »    PDF »
Circadian clocks: regulators of endocrine and metabolic rhythms.
M. Hastings, J. S O'Neill, and E. S Maywood (2007)
J. Endocrinol. 195, 187-198
   Abstract »    Full Text »    PDF »
Modeling the Electrophysiology of Suprachiasmatic Nucleus Neurons.
Choon Kiat Sim and D. B. Forger (2007)
J Biol Rhythms 22, 445-453
   Abstract »    PDF »
Beyond Intuitive Modeling: Combining Biophysical Models with Innovative Experiments to Move the Circadian Clock Field Forward.
D. Forger, D. Gonze, D. Virshup, and D. K. Welsh (2007)
J Biol Rhythms 22, 200-210
   Abstract »    PDF »
Modeling the Behavior of Coupled Cellular Circadian Oscillators in the Suprachiasmatic Nucleus.
P. Indic, W. J. Schwartz, E. D. Herzog, N. C. Foley, and M. C. Antle (2007)
J Biol Rhythms 22, 211-219
   Abstract »    PDF »
Dynamics of the Adjustment of Clock Gene Expression in the Rat Suprachiasmatic Nucleus to an Asymmetrical Change from a Long to a Short Photoperiod.
A. Sumova, Z. Kovacikova, and H. Illnerova (2007)
J Biol Rhythms 22, 259-267
   Abstract »    PDF »
The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period.
S. I. H. Godinho, E. S. Maywood, L. Shaw, V. Tucci, A. R. Barnard, L. Busino, M. Pagano, R. Kendall, M. M. Quwailid, M. R. Romero, et al. (2007)
Science 316, 897-900
   Abstract »    Full Text »    PDF »
Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity.
N. Inagaki, S. Honma, D. Ono, Y. Tanahashi, and K.-i. Honma (2007)
PNAS 104, 7664-7669
   Abstract »    Full Text »    PDF »
Circadian desynchronization of core body temperature and sleep stages in the rat.
T. Cambras, J. R. Weller, M. Angles-Pujoras, M. L. Lee, A. Christopher, A. Diez-Noguera, J. M. Krueger, and H. O. de la Iglesia (2007)
PNAS 104, 7634-7639
   Abstract »    Full Text »    PDF »
Disrupted Neuronal Activity Rhythms in the Suprachiasmatic Nuclei of Vasoactive Intestinal Polypeptide-Deficient Mice.
T. M. Brown, C. S. Colwell, J. A. Waschek, and H. D. Piggins (2007)
J Neurophysiol 97, 2553-2558
   Abstract »    Full Text »    PDF »
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation.
B. H. Miller, E. L. McDearmon, S. Panda, K. R. Hayes, J. Zhang, J. L. Andrews, M. P. Antoch, J. R. Walker, K. A. Esser, J. B. Hogenesch, et al. (2007)
PNAS 104, 3342-3347
   Abstract »    Full Text »    PDF »
Synchronizing multiphasic circadian rhythms of rhodopsin promoter expression in rod photoreceptor cells.
C.-J. Yu, Y. Gao, P. Li, and L. Li (2007)
J. Exp. Biol. 210, 676-684
   Abstract »    Full Text »    PDF »
Gates and Oscillators II: Zeitgebers and the Network Model of the Brain Clock.
M. C. Antle, N. C. Foley, D. K. Foley, and R. Silver (2007)
J Biol Rhythms 22, 14-25
   Abstract »    PDF »
Gate Cells See the Light.
D. K. Welsh (2007)
J Biol Rhythms 22, 26-28
   PDF »
Bimodal Clock Gene Expression in Mouse Suprachiasmatic Nucleus and Peripheral Tissues Under a 7-Hour Light and 5-Hour Dark Schedule.
T. Watanabe, E. Naito, N. Nakao, H. Tei, T. Yoshimura, and S. Ebihara (2007)
J Biol Rhythms 22, 58-68
   Abstract »    PDF »
Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei.
H. M. Prosser, A. Bradley, J. E. Chesham, F. J. P. Ebling, M. H. Hastings, and E. S. Maywood (2007)
PNAS 104, 648-653
   Abstract »    Full Text »    PDF »
Depolarization and Neurotransmitter Regulation of Vasopressin Gene Expression in the Rat Suprachiasmatic Nucleus In Vitro.
M. Rusnak, Z. E. Toth, S. B. House, and H. Gainer (2007)
J. Neurosci. 27, 141-151
   Abstract »    Full Text »    PDF »
Biological Rhythms Workshop IB: Neurophysiology of SCN Pacemaker Function.
S. J. Kuhlman (2007)
Cold Spring Harb Symp Quant Biol 72, 21-33
   Abstract »    PDF »
Genetic and Molecular Analysis of the Central and Peripheral Circadian Clockwork of Mice.
E. S. Maywood, J. S. O'Neill, A. B. Reddy, J. E. Chesham, H. M. Prosser, C. P. Kyriacou, S. I. H. Godinho, P. M. Nolan, and M. H. Hastings (2007)
Cold Spring Harb Symp Quant Biol 72, 85-94
   Abstract »    PDF »
Peripheral Clocks: Keeping Up with the Master Clock.
E. Kowalska and S. A. Brown (2007)
Cold Spring Harb Symp Quant Biol 72, 301-305
   Abstract »    PDF »
Stochastic Phase Oscillators and Circadian Bioluminescence Recordings.
J. Rougemont and F. Naef (2007)
Cold Spring Harb Symp Quant Biol 72, 405-411
   Abstract »    PDF »
Exploring Spatiotemporal Organization of SCN Circuits.
L. Yan, I. Karatsoreos, J. LeSauter, D. K. Welsh, S. Kay, D. Foley, and R. Silver (2007)
Cold Spring Harb Symp Quant Biol 72, 527-541
   Abstract »    PDF »
Suprachiasmatic Nucleus Clock Time in the Mammalian Circadian System.
H. Okamura (2007)
Cold Spring Harb Symp Quant Biol 72, 551-556
   Abstract »    PDF »
GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons.
S. J. Aton, J. E. Huettner, M. Straume, and E. D. Herzog (2006)
PNAS 103, 19188-19193
   Abstract »    Full Text »    PDF »
Encoding the Ins and Outs of Circadian Pacemaking.
S. J. Kuhlman and D. G. McMahon (2006)
J Biol Rhythms 21, 470-481
   Abstract »    PDF »
Systems Biology of Circadian Rhythms: An Outlook.
L. De Haro and S. Panda (2006)
J Biol Rhythms 21, 507-518
   Abstract »    PDF »
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).
K. Vanselow, J. T. Vanselow, P. O. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, and A. Kramer (2006)
Genes & Dev. 20, 2660-2672
   Abstract »    Full Text »    PDF »
Circadian intraocular pressure rhythm is generated by clock genes..
A. Maeda, S. Tsujiya, T. Higashide, K. Toida, T. Todo, T. Ueyama, H. Okamura, and K. Sugiyama (2006)
Invest. Ophthalmol. Vis. Sci. 47, 4050-4052
   Abstract »    Full Text »    PDF »
Simulation of Day-Length Encoding in the SCN: From Single-Cell to Tissue-Level Organization.
J. Rohling, L. Wolters, and J. H. Meijer (2006)
J Biol Rhythms 21, 301-313
   Abstract »    PDF »
Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes.
R. M. de Paula, Z. A. Lewis, A. V. Greene, K. S. Seo, L. W. Morgan, M. W. Vitalini, L. Bennett, R. H. Gomer, and D. Bell-Pedersen (2006)
J Biol Rhythms 21, 159-168
   Abstract »    PDF »
Phase Angle Difference Alters Coupling Relations of Functionally Distinct Circadian Oscillators Revealed by Rhythm Splitting.
M. R. Gorman and N. A. Steele (2006)
J Biol Rhythms 21, 195-205
   Abstract »    PDF »
History-Dependent Changes in Entrainment of the Activity Rhythm in the Syrian Hamster (Mesocricetus auratus).
J. J. Chiesa, M. Angles-Pujolras, A. Diez-Noguera, and T. Cambras (2006)
J Biol Rhythms 21, 45-57
   Abstract »    PDF »
Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells.
Y. Masamizu, T. Ohtsuka, Y. Takashima, H. Nagahara, Y. Takenaka, K. Yoshikawa, H. Okamura, and R. Kageyama (2006)
PNAS 103, 1313-1318
   Abstract »    Full Text »    PDF »
Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods.
M. N. Nitabach, Y. Wu, V. Sheeba, W. C. Lemon, J. Strumbos, P. K. Zelensky, B. H. White, and T. C. Holmes (2006)
J. Neurosci. 26, 479-489
   Abstract »    Full Text »    PDF »
Gastrin-Releasing Peptide Promotes Suprachiasmatic Nuclei Cellular Rhythmicity in the Absence of Vasoactive Intestinal Polypeptide-VPAC2 Receptor Signaling.
T. M. Brown, A. T. Hughes, and H. D. Piggins (2005)
J. Neurosci. 25, 11155-11164
   Abstract »    Full Text »    PDF »
c-Fos Expression in the Brains of Behaviorally "Split" Hamsters in Constant Light: Calling Attention to a Dorsolateral Region of the Suprachiasmatic Nucleus and the Medial Division of the Lateral Habenula.
M. Tavakoli-Nezhad and W. J. Schwartz (2005)
J Biol Rhythms 20, 419-429
   Abstract »    PDF »
Activity rhythm of golden hamster (Mesocricetus auratus) can be entrained to a 19-h light-dark cycle.
J. J. Chiesa, M. Angles-Pujolras, A. Diez-Noguera, and T. Cambras (2005)
Am J Physiol Regulatory Integrative Comp Physiol 289, R998-R1005
   Abstract »    Full Text »    PDF »
Two Antiphase Oscillations Occur in Each Suprachiasmatic Nucleus of Behaviorally Split Hamsters.
L. Yan, N. C. Foley, J. M. Bobula, L. J. Kriegsfeld, and R. Silver (2005)
J. Neurosci. 25, 9017-9026
   Abstract »    Full Text »    PDF »
A Calcium Flux Is Required for Circadian Rhythm Generation in Mammalian Pacemaker Neurons.
G. B. Lundkvist, Y. Kwak, E. K. Davis, H. Tei, and G. D. Block (2005)
J. Neurosci. 25, 7682-7686
   Abstract »    Full Text »    PDF »
Differential Response of Period 1 Expression within the Suprachiasmatic Nucleus.
W. Nakamura, S. Yamazaki, N. N. Takasu, K. Mishima, and G. D. Block (2005)
J. Neurosci. 25, 5481-5487
   Abstract »    Full Text »    PDF »
Entrainment in a Model of the Mammalian Circadian Oscillator.
F. Geier, S. Becker-Weimann, A. Kramer, and H. Herzel (2005)
J Biol Rhythms 20, 83-93
   Abstract »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882