Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 302 (5653): 2126-2130

Copyright © 2003 by the American Association for the Advancement of Science

Dual Activation of the Drosophila Toll Pathway by Two Pattern Recognition Receptors

Vanessa Gobert,1 Marie Gottar,1 Alexey A. Matskevich,1 Sophie Rutschmann,1* Julien Royet,1 Marcia Belvin,2 Jules A. Hoffmann,1 Dominique Ferrandon1{dagger}

Abstract: The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demonstrate that GNBP1 and PGRP-SA can jointly activate the Toll pathway. The potential for a combination of distinct proteins to mediate detection of infectious nonself in the fly will refine the concept of pattern recognition in insects.

1 Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F67084 Strasbourg Cedex, France.
2 Exelixis Inc., South San Francisco, CA 94083, USA.

Back to Top

* Present address: Department of Immunology, IMM-30, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

{dagger} To whom correspondence should be addressed. E-mail: D.Ferrandon{at}ibmc.u-strasbg.fr


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Interspecific Divergence of Transcription Networks along Lines of Genetic Variance in Drosophila: Dimensionality, Evolvability, and Constraint.
P. Innocenti and S. F. Chenoweth (2013)
Mol. Biol. Evol. 30, 1358-1367
   Abstract »    Full Text »    PDF »
The Drosophila Toll Pathway Controls but Does Not Clear Candida glabrata Infections.
J. Quintin, J. Asmar, A. A. Matskevich, M.-C. Lafarge, and D. Ferrandon (2013)
J. Immunol. 190, 2818-2827
   Abstract »    Full Text »    PDF »
Whole-genome expression profile analysis of Drosophila melanogaster immune responses.
L. Teixeira (2012)
Briefings in Functional Genomics 11, 375-386
   Abstract »    Full Text »    PDF »
Drosophila as a model system to unravel the layers of innate immunity to infection.
I. Kounatidis and P. Ligoxygakis (2012)
Open Bio 2, 120075
   Abstract »    Full Text »    PDF »
Intracellular recognition of pathogens and autophagy as an innate immune host defence.
T. Yano and S. Kurata (2011)
J. Biochem. 150, 143-149
   Abstract »    Full Text »    PDF »
Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster.
A. Fullaondo, S. Garcia-Sanchez, A. Sanz-Parra, E. Recio, S. Y. Lee, and D. Gubb (2011)
Mol. Cell. Biol. 31, 2960-2972
   Abstract »    Full Text »    PDF »
Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans.
M. T. Glittenberg, S. Silas, D. M. MacCallum, N. A. R. Gow, and P. Ligoxygakis (2011)
Dis. Model. Mech. 4, 504-514
   Abstract »    Full Text »    PDF »
The Drosophila Toll Signaling Pathway.
S. Valanne, J.-H. Wang, and M. Ramet (2011)
J. Immunol. 186, 649-656
   Abstract »    Full Text »    PDF »
Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC.
S. Kurata (2010)
Int. Immunol. 22, 143-148
   Abstract »    Full Text »    PDF »
NF-{kappa}B in the Immune Response of Drosophila.
C. Hetru and J. A. Hoffmann (2009)
Cold Spring Harb Perspect Biol 1, a000232
   Abstract »    Full Text »    PDF »
Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection.
I. T. Helenius, T. Krupinski, D. W. Turnbull, Y. Gruenbaum, N. Silverman, E. A. Johnson, P. H. S. Sporn, J. I. Sznajder, and G. J. Beitel (2009)
PNAS 106, 18710-18715
   Abstract »    Full Text »    PDF »
The N-terminal Domain of Drosophila Gram-negative Binding Protein 3 (GNBP3) Defines a Novel Family of Fungal Pattern Recognition Receptors.
Y. Mishima, J. Quintin, V. Aimanianda, C. Kellenberger, F. Coste, C. Clavaud, C. Hetru, J. A. Hoffmann, J.-P. Latge, D. Ferrandon, et al. (2009)
J. Biol. Chem. 284, 28687-28697
   Abstract »    Full Text »    PDF »
A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway.
N. Buchon, M. Poidevin, H.-M. Kwon, A. Guillou, V. Sottas, B.-L. Lee, and B. Lemaitre (2009)
PNAS 106, 12442-12447
   Abstract »    Full Text »    PDF »
Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component.
K.-B. Roh, C.-H. Kim, H. Lee, H.-M. Kwon, J.-W. Park, J.-H. Ryu, K. Kurokawa, N.-C. Ha, W.-J. Lee, B. Lemaitre, et al. (2009)
J. Biol. Chem. 284, 19474-19481
   Abstract »    Full Text »    PDF »
Solution structure of the silkworm {beta}GRP/GNBP3 N-terminal domain reveals the mechanism for {beta}-1,3-glucan-specific recognition.
K. Takahasi, M. Ochiai, M. Horiuchi, H. Kumeta, K. Ogura, M. Ashida, and F. Inagaki (2009)
PNAS 106, 11679-11684
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition protein-SD provides versatility of receptor formation in Drosophila immunity.
L. Wang, R. J. C. Gilbert, M. L. Atilano, S. R. Filipe, N. J. Gay, and P. Ligoxygakis (2008)
PNAS 105, 11881-11886
   Abstract »    Full Text »    PDF »
Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila.
R. L. Schmidt, T. R. Trejo, T. B. Plummer, J. L. Platt, and A. H. Tang (2008)
FASEB J 22, 918-929
   Abstract »    Full Text »    PDF »
Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster.
T. Tanji, X. Hu, A. N. R. Weber, and Y. T. Ip (2007)
Mol. Cell. Biol. 27, 4578-4588
   Abstract »    Full Text »    PDF »
Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects.
J.-W. Park, C.-H. Kim, J.-H. Kim, B.-R. Je, K.-B. Roh, S.-J. Kim, H.-H. Lee, J.-H. Ryu, J.-H. Lim, B.-H. Oh, et al. (2007)
PNAS 104, 6602-6607
   Abstract »    Full Text »    PDF »
Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger.
G. Bidla, M. S. Dushay, and U. Theopold (2007)
J. Cell Sci. 120, 1209-1215
   Abstract »    Full Text »    PDF »
Fungal Peptide Destruxin A Plays a Specific Role in Suppressing the Innate Immune Response in Drosophila melanogaster.
S. Pal, R. J. St. Leger, and L. P. Wu (2007)
J. Biol. Chem. 282, 8969-8977
   Abstract »    Full Text »    PDF »
Quantitative Comparison of Caste Differences in Honeybee Hemolymph.
Q. W. T. Chan, C. G. Howes, and L. J. Foster (2006)
Mol. Cell. Proteomics 5, 2252-2262
   Abstract »    Full Text »    PDF »
Genetic Variation in Drosophila melanogaster Resistance to Infection: A Comparison Across Bacteria.
B. P. Lazzaro, T. B. Sackton, and A. G. Clark (2006)
Genetics 174, 1539-1554
   Abstract »    Full Text »    PDF »
Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA.
L. Wang, A. N. Weber, M. L. Atilano, S. R. Filipe, N. J. Gay, and P. Ligoxygakis (2006)
EMBO J. 25, 5005-5014
   Abstract »    Full Text »    PDF »
Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila.
H. Tang, Z. Kambris, B. Lemaitre, and C. Hashimoto (2006)
J. Biol. Chem. 281, 28097-28104
   Abstract »    Full Text »    PDF »
Structural Basis for Preferential Recognition of Diaminopimelic Acid-type Peptidoglycan by a Subset of Peptidoglycan Recognition Proteins.
J.-H. Lim, M.-S. Kim, H.-E. Kim, T. Yano, Y. Oshima, K. Aggarwal, W. E. Goldman, N. Silverman, S. Kurata, and B.-H. Oh (2006)
J. Biol. Chem. 281, 8286-8295
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition by the Drosophila Imd pathway.
T. Kaneko, D. Golenbock, and N. Silverman (2005)
Innate Immunity 11, 383-389
   Abstract »    PDF »
Gene Silencing and Overexpression of Porcine Peptidoglycan Recognition Protein Long Isoforms: Involvement in {beta}-Defensin-1 Expression.
Y. Sang, B. Ramanathan, C. R. Ross, and F. Blecha (2005)
Infect. Immun. 73, 7133-7141
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition in innate immunity.
R. Dziarski and D. Gupta (2005)
Innate Immunity 11, 304-310
   Abstract »    PDF »
Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro.
P. Mellroth, J. Karlsson, J. Hakansson, N. Schultz, W. E. Goldman, and H. Steiner (2005)
PNAS 102, 6455-6460
   Abstract »    Full Text »    PDF »
Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway.
S. R. Filipe, A. Tomasz, and P. Ligoxygakis (2005)
EMBO Rep. 6, 327-333
   Abstract »    Full Text »    PDF »
Toll-like receptors in innate immunity.
K. Takeda and S. Akira (2005)
Int. Immunol. 17, 1-14
   Abstract »    Full Text »    PDF »
Peptidoglycan Molecular Requirements Allowing Detection by the Drosophila Immune Deficiency Pathway.
C. R. Stenbak, J.-H. Ryu, F. Leulier, S. Pili-Floury, C. Parquet, M. Herve, C. Chaput, I. G. Boneca, W.-J. Lee, B. Lemaitre, et al. (2004)
J. Immunol. 173, 7339-7348
   Abstract »    Full Text »    PDF »
Structural basis for peptidoglycan binding by peptidoglycan recognition proteins.
R. Guan, A. Roychowdhury, B. Ember, S. Kumar, G.-J. Boons, and R. A. Mariuzza (2004)
PNAS 101, 17168-17173
   Abstract »    Full Text »    PDF »
Innate Immune Responses in Peptidoglycan Recognition Protein L-Deficient Mice.
M. Xu, Z. Wang, and R. M. Locksley (2004)
Mol. Cell. Biol. 24, 7949-7957
   Abstract »    Full Text »    PDF »
Toll-dependent and Toll-independent immune responses in Drosophila.
J.-L. Imler, D. Ferrandon, J. Royet, J.-M. Reichhart, C. Hetru, and J. A. Hoffmann (2004)
Innate Immunity 10, 241-246
   Abstract »    PDF »
Toll and Toll-9 in Drosophila innate immune response.
R. Bettencourt, T. Tanji, Y. Yagi, and Y. T. Ip (2004)
Innate Immunity 10, 261-268
   Abstract »    PDF »
Crystal Structure of the C-terminal Peptidoglycan-binding Domain of Human Peptidoglycan Recognition Protein I{alpha}.
R. Guan, E. L. Malchiodi, Q. Wang, P. Schuck, and R. A. Mariuzza (2004)
J. Biol. Chem. 279, 31873-31882
   Abstract »    Full Text »    PDF »
Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics.
M. A. Osta, G. K. Christophides, D. Vlachou, and F. C. Kafatos (2004)
J. Exp. Biol. 207, 2551-2563
   Abstract »    Full Text »    PDF »
Primary Structure and in Vitro Antibacterial Properties of the Drosophila melanogaster Attacin C Pro-domain.
D. Rabel, M. Charlet, L. Ehret-Sabatier, L. Cavicchioli, M. Cudic, L. Otvos Jr., and P. Bulet (2004)
J. Biol. Chem. 279, 14853-14859
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Systemic Immune Response of Drosophila.
F. Levy, P. Bulet, and L. Ehret-Sabatier (2004)
Mol. Cell. Proteomics 3, 156-166
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882