Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 303 (5654): 56-59

Copyright © 2004 by the American Association for the Advancement of Science

Foxg1 Suppresses Early Cortical Cell Fate

Carina Hanashima,1,2 Suzanne C. Li,2* Lijian Shen,3 Eseng Lai,2{dagger}{ddagger} Gord Fishell1{ddagger}

Abstract: During mammalian cerebral corticogenesis, progenitor cells become progressively restricted in the types of neurons they can produce. The molecular mechanism that determines earlier versus later born neuron fate is unknown. We demonstrate here that the generation of the earliest born neurons, the Cajal-Retzius cells, is suppressed by the telencephalic transcription factor Foxg1. In Foxg1 null mutants, we observed an excess of Cajal-Retzius neuron production in the cortex. By conditionally inactivating Foxg1 in cortical progenitors that normally produce deep-layer cortical neurons, we demonstrate that Foxg1 is constitutively required to suppress Cajal-Retzius cell fate. Hence, the competence to generate the earliest born neurons during later cortical development is actively suppressed but not lost.

1 Developmental Genetics Program and the Department of Cell Biology, The Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA.
2 Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
3 Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA.

Back to Top

* Present address: Hackensack University Medical Center, 30 Prospect Avenue, Hackensack, NJ 07601, USA.

{dagger} Present address: Clinical Pharmacology, Merck Research Labs, RY34-A-428, 126 East Lincoln Avenue, Rahway, NJ 07065–0900, USA.

{ddagger} To whom correspondence should be addressed. E-mail: fishell{at} (G.F.); eseng_lai{at} (E.L.)

The miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells.
H. Naka-Kaneda, S. Nakamura, M. Igarashi, H. Aoi, H. Kanki, J. Tsuyama, S. Tsutsumi, H. Aburatani, T. Shimazaki, and H. Okano (2014)
PNAS 111, 1604-1609
   Abstract »    Full Text »    PDF »
miRNAs are Essential for the Survival and Maturation of Cortical Interneurons.
S. N. Tuncdemir, G. Fishell, and R. Batista-Brito (2014)
Cereb Cortex
   Abstract »    Full Text »    PDF »
Smad4 and Trim33/Tif1{gamma} Redundantly Regulate Neural Stem Cells in the Developing Cortex.
S. Falk, E. Joosten, V. Kaartinen, and L. Sommer (2013)
Cereb Cortex
   Abstract »    Full Text »    PDF »
Modeling human cortical development in vitro using induced pluripotent stem cells.
J. Mariani, M. V. Simonini, D. Palejev, L. Tomasini, G. Coppola, A. M. Szekely, T. L. Horvath, and F. M. Vaccarino (2012)
PNAS 109, 12770-12775
   Abstract »    Full Text »    PDF »
Satb2 Is Required for Dendritic Arborization and Soma Spacing in Mouse Cerebral Cortex.
L. Zhang, N.-N. Song, J.-Y. Chen, Y. Huang, H. Li, and Y.-Q. Ding (2012)
Cereb Cortex 22, 1510-1519
   Abstract »    Full Text »    PDF »
Transducin-like Enhancer of Split-1 (TLE1) Combines with Forkhead Box Protein G1 (FoxG1) to Promote Neuronal Survival.
S. G. Dastidar, S. Narayanan, S. Stifani, and S. R. D'Mello (2012)
J. Biol. Chem. 287, 14749-14759
   Abstract »    Full Text »    PDF »
Isoform-Specific Toxicity of Mecp2 in Postmitotic Neurons: Suppression of Neurotoxicity by FoxG1.
S. G. Dastidar, F. H. Bardai, C. Ma, V. Price, V. Rawat, P. Verma, V. Narayanan, and S. R. D'Mello (2012)
J. Neurosci. 32, 2846-2855
   Abstract »    Full Text »    PDF »
Ascl1 Participates in Cajal-Retzius Cell Development in the Neocortex.
R. Dixit, C. Zimmer, R. R. Waclaw, P. Mattar, T. Shaker, C. Kovach, C. Logan, K. Campbell, F. Guillemot, and C. Schuurmans (2011)
Cereb Cortex 21, 2599-2611
   Abstract »    Full Text »    PDF »
MicroRNAs in Development and Disease.
D. Sayed and M. Abdellatif (2011)
Physiol Rev 91, 827-887
   Abstract »    Full Text »    PDF »
The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis.
F. Kortum, S. Das, M. Flindt, D. J. Morris-Rosendahl, I. Stefanova, A. Goldstein, D. Horn, E. Klopocki, G. Kluger, P. Martin, et al. (2011)
J. Med. Genet. 48, 396-406
   Abstract »    Full Text »    PDF »
MicroRNA-9 Regulates Neurogenesis in Mouse Telencephalon by Targeting Multiple Transcription Factors.
M. Shibata, H. Nakao, H. Kiyonari, T. Abe, and S. Aizawa (2011)
J. Neurosci. 31, 3407-3422
   Abstract »    Full Text »    PDF »
FoxG1 Promotes the Survival of Postmitotic Neurons.
S. G. Dastidar, P. M. Z. Landrieu, and S. R. D'Mello (2011)
J. Neurosci. 31, 402-413
   Abstract »    Full Text »    PDF »
The Influence of the Environment on Cajal-Retzius Cell Migration.
M. L. Ceci, L. Lopez-Mascaraque, and J. A. de Carlos (2010)
Cereb Cortex 20, 2348-2360
   Abstract »    Full Text »    PDF »
LIM-Homeobox Gene Lhx5 Is Required for Normal Development of Cajal-Retzius Cells.
A. Miquelajauregui, A. Varela-Echavarria, M. L. Ceci, F. Garcia-Moreno, I. Ricano, K. Hoang, D. Frade-Perez, C. Portera-Cailliau, E. Tamariz, J. A. De Carlos, et al. (2010)
J. Neurosci. 30, 10551-10562
   Abstract »    Full Text »    PDF »
Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity.
K. D. Tran, M. R. Miller, and C. Q. Doe (2010)
Development 137, 1421-1430
   Abstract »    Full Text »    PDF »
FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation.
M. Roth, B. Bonev, J. Lindsay, R. Lea, N. Panagiotaki, C. Houart, and N. Papalopulu (2010)
Development 137, 1553-1562
   Abstract »    Full Text »    PDF »
{beta}-Catenin Signaling Levels in Progenitors Influence the Laminar Cell Fates of Projection Neurons.
C. A. Mutch, N. Funatsu, E. S. Monuki, and A. Chenn (2009)
J. Neurosci. 29, 13710-13719
   Abstract »    Full Text »    PDF »
Selective Cortical Layering Abnormalities and Behavioral Deficits in Cortex-Specific Pax6 Knock-Out Mice.
T. C. Tuoc, K. Radyushkin, A. B. Tonchev, M. C. Pinon, R. Ashery-Padan, Z. Molnar, M. S. Davidoff, and A. Stoykova (2009)
J. Neurosci. 29, 8335-8349
   Abstract »    Full Text »    PDF »
Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.
S. Kawauchi, J. Kim, R. Santos, H.-H. Wu, A. D. Lander, and A. L. Calof (2009)
Development 136, 1453-1464
   Abstract »    Full Text »    PDF »
Stem Cells Use Distinct Self-renewal Programs at Different Ages.
B.P. Levi and S.J. Morrison (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Specific Glial Populations Regulate Hippocampal Morphogenesis.
G. Barry, M. Piper, C. Lindwall, R. Moldrich, S. Mason, E. Little, A. Sarkar, S. Tole, R. M. Gronostajski, and L. J. Richards (2008)
J. Neurosci. 28, 12328-12340
   Abstract »    Full Text »    PDF »
Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates?.
J. Jacob, C. Maurange, and A. P. Gould (2008)
Development 135, 3481-3489
   Abstract »    Full Text »    PDF »
Pdm and Castor close successive temporal identity windows in the NB3-1 lineage.
K. D. Tran and C. Q. Doe (2008)
Development 135, 3491-3499
   Abstract »    Full Text »    PDF »
MicroRNA-9 Modulates Cajal-Retzius Cell Differentiation by Suppressing Foxg1 Expression in Mouse Medial Pallium.
M. Shibata, D. Kurokawa, H. Nakao, T. Ohmura, and S. Aizawa (2008)
J. Neurosci. 28, 10415-10421
   Abstract »    Full Text »    PDF »
Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination.
A. S. Pawlisz, C. Mutch, A. Wynshaw-Boris, A. Chenn, C. A. Walsh, and Y. Feng (2008)
Hum. Mol. Genet. 17, 2441-2455
   Abstract »    Full Text »    PDF »
Foxg1 Haploinsufficiency Reduces the Population of Cortical Intermediate Progenitor Cells: Effect of Increased p21 Expression.
J. A. Siegenthaler, B. A. Tremper-Wells, and M. W. Miller (2008)
Cereb Cortex 18, 1865-1875
   Abstract »    Full Text »    PDF »
Foxg1 Is Required for Development of the Vertebrate Olfactory System.
C. D. Duggan, S. DeMaria, A. Baudhuin, D. Stafford, and J. Ngai (2008)
J. Neurosci. 28, 5229-5239
   Abstract »    Full Text »    PDF »
The Role of Foxg1 and Dorsal Midline Signaling in the Generation of Cajal-Retzius Subtypes.
C. Hanashima, M. Fernandes, J. M. Hebert, and G. Fishell (2007)
J. Neurosci. 27, 11103-11111
   Abstract »    Full Text »    PDF »
Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells.
C. A. Lyssiotis, J. Walker, C. Wu, T. Kondo, P. G. Schultz, and X. Wu (2007)
PNAS 104, 14982-14987
   Abstract »    Full Text »    PDF »
Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors.
G. Miyoshi, S. J. B. Butt, H. Takebayashi, and G. Fishell (2007)
J. Neurosci. 27, 7786-7798
   Abstract »    Full Text »    PDF »
Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish.
J. Shin, J. Poling, H.-C. Park, and B. Appel (2007)
Development 134, 1911-1920
   Abstract »    Full Text »    PDF »
Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice.
J. V. Nielsen, F. H. Nielsen, R. Ismail, J. Noraberg, and N. A. Jensen (2007)
Development 134, 1133-1140
   Abstract »    Full Text »    PDF »
Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage.
R. Grosskortenhaus, K. J. Robinson, and C. Q. Doe (2006)
Genes & Dev. 20, 2618-2627
   Abstract »    Full Text »    PDF »
Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers.
E. E. Storm, S. Garel, U. Borello, J. M. Hebert, S. Martinez, S. K. McConnell, G. R. Martin, and J. L. R. Rubenstein (2006)
Development 133, 1831-1844
   Abstract »    Full Text »    PDF »
Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window..
M. D. Cleary and C. Q. Doe (2006)
Genes & Dev. 20, 429-434
   Abstract »    Full Text »    PDF »
Antagonistic Effects of Grg6 and Groucho/TLE on the Transcription Repression Activity of Brain Factor 1/FoxG1 and Cortical Neuron Differentiation.
N. Marcal, H. Patel, Z. Dong, S. Belanger-Jasmin, B. Hoffman, C. D. Helgason, J. Dang, and S. Stifani (2005)
Mol. Cell. Biol. 25, 10916-10929
   Abstract »    Full Text »    PDF »
Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex.
B. Chen, L. R. Schaevitz, and S. K. McConnell (2005)
PNAS 102, 17184-17189
   Abstract »    Full Text »    PDF »
Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts.
C. Cenci and A. P. Gould (2005)
Development 132, 3835-3845
   Abstract »    Full Text »    PDF »
Telencephalic Embryonic Subtractive Sequences: A Unique Collection of Neurodevelopmental Genes.
A. Bulfone, P. Carotenuto, A. Faedo, V. Aglio, L. Garzia, A. M. Bello, A. Basile, A. Andre, M. Cocchia, O. Guardiola, et al. (2005)
J. Neurosci. 25, 7586-7600
   Abstract »    Full Text »    PDF »
Retinal neurons regulate proliferation of postnatal progenitors and Muller glia in the rat retina via TGF{beta} signaling.
J. L. Close, B. Gumuscu, and T. A. Reh (2005)
Development 132, 3015-3026
   Abstract »    Full Text »    PDF »
Foxg1 Confines Cajal-Retzius Neuronogenesis and Hippocampal Morphogenesis to the Dorsomedial Pallium.
L. Muzio and A. Mallamaci (2005)
J. Neurosci. 25, 4435-4441
   Abstract »    Full Text »    PDF »
Topical Review: Neuronal Migration in Cortical Development.
S. Kanatani, H. Tabata, and K. Nakajima (2005)
J Child Neurol 20, 274-279
   Abstract »    PDF »
Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex.
K.-i. Mizutani and T. Saito (2005)
Development 132, 1295-1304
   Abstract »    Full Text »    PDF »
Foxd1 is required for proper formation of the optic chiasm.
E. Herrera, R. Marcus, S. Li, S. E. Williams, L. Erskine, E. Lai, and C. Mason (2004)
Development 131, 5727-5739
   Abstract »    Full Text »    PDF »
The Tlx Gene Regulates the Timing of Neurogenesis in the Cortex.
K. Roy, K. Kuznicki, Q. Wu, Z. Sun, D. Bock, G. Schutz, N. Vranich, and A. P. Monaghan (2004)
J. Neurosci. 24, 8333-8345
   Abstract »    Full Text »    PDF »
Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins.
M. Aoki, H. Jiang, and P. K. Vogt (2004)
PNAS 101, 13613-13617
   Abstract »    Full Text »    PDF »
FoxP2 Expression in Avian Vocal Learners and Non-Learners.
S. Haesler, K. Wada, A. Nshdejan, E. E. Morrisey, T. Lints, E. D. Jarvis, and C. Scharff (2004)
J. Neurosci. 24, 3164-3175
   Abstract »    Full Text »    PDF »
Topical Review: Neuronal Migration in Cortical Development.
S. Kanatani, H. Tabata, and K. Nakajima (2004)
J Child Neurol 19, 274-279
   Abstract »    PDF »
NEUROSCIENCE: Sealing Cortical Cell Fate.
P. Levitt (2004)
Science 303, 48-49
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882