Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5657): 527-531

Copyright © 2004 by the American Association for the Advancement of Science

T Cell Activation by Lipopeptide Antigens

D. Branch Moody,1* David C. Young,1,2 Tan-Yun Cheng,1 Jean-Pierre Rosat,1 Carme Roura-mir,1 Peter B. O'Connor,2 Dirk M. Zajonc,5 Andrew Walz,3 Marvin J. Miller,3 Steven B. Levery,4 Ian A. Wilson,5,6 Catherine E. Costello,2 Michael B. Brenner1

Abstract: Unlike major histocompatibility proteins, which bind peptides, CD1 proteins display lipid antigens to T cells. Here, we report that CD1a presents a family of previously unknown lipopeptides from Mycobacterium tuberculosis, named didehydroxymycobactins because of their structural relation to mycobactin siderophores. T cell activation was mediated by the {alpha}ß T cell receptors and was specific for structure of the acyl and peptidic components of these antigens. These studies identify a means of intracellular pathogen detection and identify lipopeptides as a biochemical class of antigens for T cells, which, like conventional peptides, have a potential for marked structural diversity.

1 Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA.
2 Mass Spectrometry Resource, Boston University School of Medicine, 715 Albany Street, R806, Boston, MA 02115, USA.
3 Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556–5670, USA.
4 Department of Chemistry, University of New Hampshire, Durham, NH 02834, USA.
5 Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
6 Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

* To whom correspondence should be addressed. E-mail: bmoody{at}rics.bwh.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
TCR Bias and Affinity Define Two Compartments of the CD1b-Glycolipid-Specific T Cell Repertoire.
I. Van Rhijn, N. A. Gherardin, A. Kasmar, W. de Jager, D. G. Pellicci, L. Kostenko, L. L. Tan, M. Bhati, S. Gras, D. I. Godfrey, et al. (2014)
J. Immunol. 192, 4054-4060
   Abstract »    Full Text »    PDF »
TB or Not TB: That Is No Longer the Question.
R. L. Modlin and B. R. Bloom (2013)
Science Translational Medicine 5, 213sr6
   Full Text »    PDF »
Cutting Edge: CD1a Tetramers and Dextramers Identify Human Lipopeptide-Specific T Cells Ex Vivo.
A. G. Kasmar, I. Van Rhijn, K. G. Magalhaes, D. C. Young, T.-Y. Cheng, M. T. Turner, A. Schiefner, R. C. Kalathur, I. A. Wilson, M. Bhati, et al. (2013)
J. Immunol. 191, 4499-4503
   Abstract »    Full Text »    PDF »
Human CD1a Deficiency Is Common and Genetically Regulated.
C. Seshadri, M. Shenoy, R. D. Wells, T. Hensley-McBain, E. Andersen-Nissen, M. J. McElrath, T.-Y. Cheng, D. B. Moody, and T. R. Hawn (2013)
J. Immunol. 191, 1586-1593
   Abstract »    Full Text »    PDF »
CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens.
D. Ly, A. G. Kasmar, T.-Y. Cheng, A. de Jong, S. Huang, S. Roy, A. Bhatt, R. P. van Summeren, J. D. Altman, W. R. Jacobs Jr., et al. (2013)
J. Exp. Med. 210, 729-741
   Abstract »    Full Text »    PDF »
Arl13b regulates endocytic recycling traffic.
D. C. Barral, S. Garg, C. Casalou, G. F. M. Watts, J. L. Sandoval, J. S. Ramalho, V. W. Hsu, and M. B. Brenner (2012)
PNAS 109, 21354-21359
   Abstract »    Full Text »    PDF »
Analyses of MbtB, MbtE, and MbtF Suggest Revisions to the Mycobactin Biosynthesis Pathway in Mycobacterium tuberculosis.
M. D. McMahon, J. S. Rush, and M. G. Thomas (2012)
J. Bacteriol. 194, 2809-2818
   Abstract »    Full Text »    PDF »
Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis.
C. A. Madigan, T.-Y. Cheng, E. Layre, D. C. Young, M. J. McConnell, C. A. Debono, J. P. Murry, J.-R. Wei, C. E. Barry 3rd, G. M. Rodriguez, et al. (2012)
PNAS 109, 1257-1262
   Abstract »    Full Text »    PDF »
Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster.
S. S. Chavadi, K. L. Stirrett, U. R. Edupuganti, O. Vergnolle, G. Sadhanandan, E. Marchiano, C. Martin, W.-G. Qiu, C. E. Soll, and L. E. N. Quadri (2011)
J. Bacteriol. 193, 5905-5913
   Abstract »    Full Text »    PDF »
Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica.
Y. Hoshino, K. Chiba, K. Ishino, T. Fukai, Y. Igarashi, K. Yazawa, Y. Mikami, and J. Ishikawa (2011)
J. Bacteriol. 193, 441-448
   Abstract »    Full Text »    PDF »
Early Recycling Compartment Trafficking of CD1a Is Essential for Its Intersection and Presentation of Lipid Antigens.
M. Cernadas, M. Cavallari, G. Watts, L. Mori, G. De Libero, and M. B. Brenner (2010)
J. Immunol. 184, 1235-1241
   Abstract »    Full Text »    PDF »
Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells.
J. Wang, Y. Li, Y. Kinjo, T.-T. Mac, D. Gibson, G. F. Painter, M. Kronenberg, and D. M. Zajonc (2010)
PNAS 107, 1535-1540
   Abstract »    Full Text »    PDF »
Mincle is a long sought receptor for mycobacterial cord factor.
I. Matsunaga and D. B. Moody (2009)
J. Exp. Med. 206, 2865-2868
   Abstract »    Full Text »    PDF »
CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice.
K. Felio, H. Nguyen, C. C. Dascher, H.-J. Choi, S. Li, M. I. Zimmer, A. Colmone, D. B. Moody, M. B. Brenner, and C.-R. Wang (2009)
J. Exp. Med. 206, 2497-2509
   Abstract »    Full Text »    PDF »
Synthesis of Dideoxymycobactin Antigens Presented by CD1a Reveals T Cell Fine Specificity for Natural Lipopeptide Structures.
D. C. Young, A. Kasmar, G. Moraski, T.-Y. Cheng, A. J. Walz, J. Hu, Y. Xu, G. W. Endres, A. Uzieblo, D. Zajonc, et al. (2009)
J. Biol. Chem. 284, 25087-25096
   Abstract »    Full Text »    PDF »
CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids.
I. Van Rhijn, D. C. Young, A. De Jong, J. Vazquez, T.-Y. Cheng, R. Talekar, D. C. Barral, L. Leon, M. B. Brenner, J. T. Katz, et al. (2009)
J. Exp. Med. 206, 1409-1422
   Abstract »    Full Text »    PDF »
Fatty Acyl Structures of Mycobacterium tuberculosis Sulfoglycolipid Govern T Cell Response.
J. Guiard, A. Collmann, L. F. Garcia-Alles, L. Mourey, T. Brando, L. Mori, M. Gilleron, J. Prandi, G. De Libero, and G. Puzo (2009)
J. Immunol. 182, 7030-7037
   Abstract »    Full Text »    PDF »
The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1.
D. M. Zajonc, H. Striegl, C. C. Dascher, and I. A. Wilson (2008)
PNAS 105, 17925-17930
   Abstract »    Full Text »    PDF »
Mycobacterial Lipopeptides Elicit CD4+ CTLs in Mycobacterium tuberculosis-Infected Humans.
M. Bastian, T. Braun, H. Bruns, M. Rollinghoff, and S. Stenger (2008)
J. Immunol. 180, 3436-3446
   Abstract »    Full Text »    PDF »
Siderophore-Based Iron Acquisition and Pathogen Control.
M. Miethke and M. A. Marahiel (2007)
Microbiol. Mol. Biol. Rev. 71, 413-451
   Abstract »    Full Text »    PDF »
Role of lipid trimming and CD1 groove size in cellular antigen presentation.
T.-Y. Cheng, M. Relloso, I. Van Rhijn, D. C. Young, G. S. Besra, V. Briken, D. M. Zajonc, I. A. Wilson, S. Porcelli, and D. B. Moody (2006)
EMBO J. 25, 2989-2999
   Abstract »    Full Text »    PDF »
T-cell recognition of glycolipids presented by CD1 proteins.
D. C. Young and D. B. Moody (2006)
Glycobiology 16, 103R-112R
   Abstract »    Full Text »    PDF »
Design of natural killer T cell activators: Structure and function of a microbial glycosphingolipid bound to mouse CD1d..
D. Wu, D. M. Zajonc, M. Fujio, B. A. Sullivan, Y. Kinjo, M. Kronenberg, I. A. Wilson, and C.-H. Wong (2006)
PNAS 103, 3972-3977
   Abstract »    Full Text »    PDF »
A Major Cell Wall Lipopeptide of Mycobacterium avium subspecies paratuberculosis.
T. M. Eckstein, S. Chandrasekaran, S. Mahapatra, M. R. McNeil, D. Chatterjee, C. D. Rithner, P. W. Ryan, J. T. Belisle, and J. M. Inamine (2006)
J. Biol. Chem. 281, 5209-5215
   Abstract »    Full Text »    PDF »
A genetic locus required for iron acquisition in Mycobacterium tuberculosis.
R. Krithika, U. Marathe, P. Saxena, Mohd. Z. Ansari, D. Mohanty, and R. S. Gokhale (2006)
PNAS 103, 2069-2074
   Abstract »    Full Text »    PDF »
Lipid-binding Proteins in Membrane Digestion, Antigen Presentation, and Antimicrobial Defense.
T. Kolter, F. Winau, U. E. Schaible, M. Leippe, and K. Sandhoff (2005)
J. Biol. Chem. 280, 41125-41128
   Full Text »    PDF »
Assistance of Microbial Glycolipid Antigen Processing by CD1e.
H. de la Salle, S. Mariotti, C. Angenieux, M. Gilleron, L.-F. Garcia-Alles, D. Malm, T. Berg, S. Paoletti, B. Maitre, L. Mourey, et al. (2005)
Science 310, 1321-1324
   Abstract »    Full Text »    PDF »
CD1a-, b-, and c-Restricted TCRs Recognize Both Self and Foreign Antigens.
M. S. Vincent, X. Xiong, E. P. Grant, W. Peng, and M. B. Brenner (2005)
J. Immunol. 175, 6344-6351
   Abstract »    Full Text »    PDF »
Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells.
S. K. Dougan, A. Salas, P. Rava, A. Agyemang, A. Kaser, J. Morrison, A. Khurana, M. Kronenberg, C. Johnson, M. Exley, et al. (2005)
J. Exp. Med. 202, 529-539
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Regulates CD1 Antigen Presentation Pathways through TLR-2.
C. Roura-Mir, L. Wang, T.-Y. Cheng, I. Matsunaga, C. C. Dascher, S. L. Peng, M. J. Fenton, C. Kirschning, and D. B. Moody (2005)
J. Immunol. 175, 1758-1766
   Abstract »    Full Text »    PDF »
Human CD1-restricted T cell recognition of lipids from pollens.
E. Agea, A. Russano, O. Bistoni, R. Mannucci, I. Nicoletti, L. Corazzi, A. D. Postle, G. De Libero, S. A. Porcelli, and F. Spinozzi (2005)
J. Exp. Med. 202, 295-308
   Abstract »    Full Text »    PDF »
From The Cover: Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC.
J. Salomonsen, M. R. Sorensen, D. A. Marston, S. L. Rogers, T. Collen, A. van Hateren, A. L. Smith, R. K. Beal, K. Skjodt, and J. Kaufman (2005)
PNAS 102, 8668-8673
   Abstract »    Full Text »    PDF »
CD1a and CD1c Activate Intrathyroidal T Cells during Graves' Disease and Hashimoto's Thyroiditis.
C. Roura-Mir, M. Catalfamo, T.-Y. Cheng, E. Marqusee, G. S. Besra, D. Jaraquemada, and D. B. Moody (2005)
J. Immunol. 174, 3773-3780
   Abstract »    Full Text »    PDF »
The Human CD1-Restricted T Cell Repertoire Is Limited to Cross-Reactive Antigens: Implications for Host Responses against Immunologically Related Pathogens.
P. A. Sieling, J. B. Torrelles, S. Stenger, W. Chung, A. E. Burdick, T. H. Rea, P. J. Brennan, J. T. Belisle, S. A. Porcelli, and R. L. Modlin (2005)
J. Immunol. 174, 2637-2644
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis pks12 Produces a Novel Polyketide Presented by CD1c to T Cells.
I. Matsunaga, A. Bhatt, D. C. Young, T.-Y. Cheng, S. J. Eyles, G. S. Besra, V. Briken, S. A. Porcelli, C. E. Costello, W. R. Jacobs Jr., et al. (2004)
J. Exp. Med. 200, 1559-1569
   Abstract »    Full Text »    PDF »
CD1d-restricted T cell activation by nonlipidic small molecules.
I. Van Rhijn, D. C. Young, J. S. Im, S. B. Levery, P. A. Illarionov, G. S. Besra, S. A. Porcelli, J. Gumperz, T.-Y. Cheng, and D. B. Moody (2004)
PNAS 101, 13578-13583
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: The Robin Hood of Antigen Presentation.
G. De Libero (2004)
Science 303, 485-487
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882