Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5658): 685-689

Copyright © 2004 by the American Association for the Advancement of Science

PEST Domain-Enriched Tyrosine Phosphatase (PEP) Regulation of Effector/Memory T Cells

Kiminori Hasegawa,1 Flavius Martin,1 Guangming Huang,1 Dan Tumas,2 Lauri Diehl,1,2 Andrew C. Chan1*

Abstract: Protein tyrosine kinases and phosphatases cooperate to regulate normal immune cell function. We examined the role of PEST domain–enriched tyrosine phosphatase (PEP) in regulating T cell antigen–receptor function during thymocyte development and peripheral T cell differentiation. Although normal naïve T cell functions were retained in pep-deficient mice, effector/memory T cells demonstrated enhanced activation of Lck. In turn, this resulted in increased expansion and function of the effector/memory T cell pool, which was also associated with spontaneous development of germinal centers and elevated serum antibody levels. These results revealed a central role for PEP in negatively regulating specific aspects of T cell development and function.

1 Department of Immunology, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
2 Department of Pathology, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA

* To whom correspondence should be addressed: acc{at}gene.com

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
PTPN22 Controls the Germinal Center by Influencing the Numbers and Activity of T Follicular Helper Cells.
C. J. Maine, K. Marquardt, J. Cheung, and L. A. Sherman (2014)
J. Immunol. 192, 1415-1424
   Abstract »    Full Text »    PDF »
Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation.
E. R. Mehlhop-Williams and M. J. Bevan (2014)
J. Exp. Med. 211, 345-356
   Abstract »    Full Text »    PDF »
PTPN22 Modulates Macrophage Polarization and Susceptibility to Dextran Sulfate Sodium-Induced Colitis.
H.-H. Chang, S.-C. Miaw, W. Tseng, Y.-W. Sun, C.-C. Liu, H.-W. Tsao, and I.-C. Ho (2013)
J. Immunol. 191, 2134-2143
   Abstract »    Full Text »    PDF »
Different Modulation of Ptpn22 in Effector and Regulatory T Cells Leads to Attenuation of Autoimmune Diabetes in Transgenic Nonobese Diabetic Mice.
L.-T. Yeh, S.-C. Miaw, M.-H. Lin, F.-C. Chou, S.-J. Shieh, Y.-P. Chuang, S.-H. Lin, D.-M. Chang, and H.-K. Sytwu (2013)
J. Immunol. 191, 594-607
   Abstract »    Full Text »    PDF »
PTPN22 Silencing in the NOD Model Indicates the Type 1 Diabetes-Associated Allele Is Not a Loss-of-Function Variant.
P. Zheng and S. Kissler (2013)
Diabetes 62, 896-904
   Abstract »    Full Text »    PDF »
Lack of the Phosphatase PTPN22 Increases Adhesion of Murine Regulatory T Cells to Improve Their Immunosuppressive Function.
R. J. Brownlie, L. A. Miosge, D. Vassilakos, L. M. Svensson, A. Cope, and R. Zamoyska (2012)
Science Signaling 5, ra87
   Abstract »    Full Text »    PDF »
Overexpression of the autoimmunity-associated phosphatase PTPN22 promotes survival of antigen-stimulated CLL cells by selectively activating AKT.
R. Negro, S. Gobessi, P. G. Longo, Y. He, Z.-Y. Zhang, L. Laurenti, and D. G. Efremov (2012)
Blood 119, 6278-6287
   Abstract »    Full Text »    PDF »
PTPN22 Alters the Development of Regulatory T Cells in the Thymus.
C. J. Maine, E. E. Hamilton-Williams, J. Cheung, S. M. Stanford, N. Bottini, L. S. Wicker, and L. A. Sherman (2012)
J. Immunol. 188, 5267-5275
   Abstract »    Full Text »    PDF »
PTPN22 R620W polymorphism in the ANCA-associated vasculitides.
D. Martorana, F. Maritati, G. Malerba, F. Bonatti, F. Alberici, E. Oliva, P. Sebastio, L. Manenti, R. Brugnano, M. G. Catanoso, et al. (2012)
Rheumatology 51, 805-812
   Abstract »    Full Text »    PDF »
The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update.
W. Lea and Y. Lee (2011)
Lupus 20, 51-57
   Abstract »    Full Text »    PDF »
Autoimmune-associated PTPN22 R620W Variation Reduces Phosphorylation of Lymphoid Phosphatase on an Inhibitory Tyrosine Residue.
E. Fiorillo, V. Orru, S. M. Stanford, Y. Liu, M. Salek, N. Rapini, A. D. Schenone, P. Saccucci, L. G. Delogu, F. Angelini, et al. (2010)
J. Biol. Chem. 285, 26506-26518
   Abstract »    Full Text »    PDF »
Regulatory polymorphisms in EGR2 are associated with susceptibility to systemic lupus erythematosus.
K. Myouzen, Y. Kochi, K. Shimane, K. Fujio, T. Okamura, Y. Okada, A. Suzuki, T. Atsumi, S. Ito, K. Takada, et al. (2010)
Hum. Mol. Genet. 19, 2313-2320
   Abstract »    Full Text »    PDF »
The CD8+ memory T-cell state of readiness is actively maintained and reversible.
A. Allam, D. B. Conze, M. L. Giardino Torchia, I. Munitic, H. Yagita, R. T. Sowell, A. L. Marzo, and J. D. Ashwell (2009)
Blood 114, 2121-2130
   Abstract »    Full Text »    PDF »
PTPN22 Deficiency Cooperates with the CD45 E613R Allele to Break Tolerance on a Non-Autoimmune Background.
J. Zikherman, M. Hermiston, D. Steiner, K. Hasegawa, A. Chan, and A. Weiss (2009)
J. Immunol. 182, 4093-4106
   Abstract »    Full Text »    PDF »
Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases.
X. Yu, J.-P. Sun, Y. He, X. Guo, S. Liu, B. Zhou, A. Hudmon, and Z.-Y. Zhang (2007)
PNAS 104, 19767-19772
   Abstract »    Full Text »    PDF »
Genetic Variation in PTPN22 Corresponds to Altered Function of T and B Lymphocytes.
M. Rieck, A. Arechiga, S. Onengut-Gumuscu, C. Greenbaum, P. Concannon, and J. H. Buckner (2007)
J. Immunol. 179, 4704-4710
   Abstract »    Full Text »    PDF »
Normal TCR Signal Transduction in Mice That Lack Catalytically Active PTPN3 Protein Tyrosine Phosphatase.
T. J. Bauler, E. D. Hughes, Y. Arimura, T. Mustelin, T. L. Saunders, and P. D. King (2007)
J. Immunol. 178, 3680-3687
   Abstract »    Full Text »    PDF »
PTPN22 R620W Functional Variant in Type 1 Diabetes and Autoimmunity Related Traits.
C. Chelala, S. Duchatelet, M.-L. Joffret, R. Bergholdt, D. Dubois-Laforgue, P. Ghandil, F. Pociot, S. Caillat-Zucman, J. Timsit, and C. Julier (2007)
Diabetes 56, 522-526
   Abstract »    Full Text »    PDF »
Differential Clearance and Immune Responses to Tick Cell-Derived versus Macrophage Culture-Derived Ehrlichia chaffeensis in Mice.
R. R. Ganta, C. Cheng, E. C. Miller, B. L. McGuire, L. Peddireddi, K. R. Sirigireddy, and S. K. Chapes (2007)
Infect. Immun. 75, 135-145
   Abstract »    Full Text »    PDF »
The PTPN22 C1858T functional polymorphism and autoimmune diseases--a meta-analysis.
Y. H. Lee, Y. H. Rho, S. J. Choi, J. D. Ji, G. G. Song, S. K. Nath, and J. B. Harley (2007)
Rheumatology 46, 49-56
   Abstract »    Full Text »    PDF »
Evidence for a Role for Notch Signaling in the Cytokine-Dependent Survival of Activated T Cells.
G. Bheeshmachar, D. Purushotaman, H. Sade, V. Gunasekharan, A. Rangarajan, and A. Sarin (2006)
J. Immunol. 177, 5041-5050
   Abstract »    Full Text »    PDF »
A biosynthetic pathway for anandamide.
J. Liu, L. Wang, J. Harvey-White, D. Osei-Hyiaman, R. Razdan, Q. Gong, A. C. Chan, Z. Zhou, B. X. Huang, H.-Y. Kim, et al. (2006)
PNAS 103, 13345-13350
   Abstract »    Full Text »    PDF »
Evidence for susceptibility determinant(s) to psoriasis vulgaris in or near PTPN22 in German patients.
U Huffmeier, M Steffens, H Burkhardt, J Lascorz, F Schurmeier-Horst, M Stander, R Kelsch, C Baumann, W Kuster, R Mossner, et al. (2006)
J. Med. Genet. 43, 517-522
   Abstract »    Full Text »    PDF »
CD2BP1 Modulates CD2-Dependent T Cell Activation via Linkage to Protein Tyrosine Phosphatase (PTP)-PEST.
H. Yang and E. L. Reinherz (2006)
J. Immunol. 176, 5898-5907
   Abstract »    Full Text »    PDF »
Lack of association between ankylosing spondylitis and a functional polymorphism of PTPN22 proposed as a general susceptibility marker for autoimmunity.
G Orozco, C Garcia-Porrua, M A Lopez-Nevot, E Raya, M A Gonzalez-Gay, and J Martin (2006)
Ann Rheum Dis 65, 687-688
   Full Text »    PDF »
Identification of Substrates of Human Protein-tyrosine Phosphatase PTPN22.
J. Wu, A. Katrekar, L. A. Honigberg, A. M. Smith, M. T. Conn, J. Tang, D. Jeffery, K. Mortara, J. Sampang, S. R. Williams, et al. (2006)
J. Biol. Chem. 281, 11002-11010
   Abstract »    Full Text »    PDF »
The association of PTPN22 with rheumatoid arthritis and juvenile idiopathic arthritis.
A. Hinks, J. Worthington, and W. Thomson (2006)
Rheumatology 45, 365-368
   Full Text »    PDF »
Confirmation of the association of the R620W polymorphism in the protein tyrosine phosphatase PTPN22 with type 1 diabetes in a family based study.
H Qu, M-C Tessier, T J Hudson, and C Polychronakos (2005)
J. Med. Genet. 42, 266-270
   Full Text »    PDF »
Replication of an Association Between the Lymphoid Tyrosine Phosphatase Locus (LYP/PTPN22) With Type 1 Diabetes, and Evidence for Its Role as a General Autoimmunity Locus.
D. Smyth, J. D. Cooper, J. E. Collins, J. M. Heward, J. A. Franklyn, J. M.M. Howson, A. Vella, S. Nutland, H. E. Rance, L. Maier, et al. (2004)
Diabetes 53, 3020-3023
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882