Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5659): 788-790

Copyright © 2004 by the American Association for the Advancement of Science

Introductory Science and Mathematics Education for 21st-Century Biologists

William Bialek1,3, and David Botstein2,3*

Abstract: Galileo wrote that "the book of nature is written in the language of mathematics"; his quantitative approach to understanding the natural world arguably marks the beginning of modern science. Nearly 400 years later, the fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that has come to define the physical sciences and engineering. This strikes us as particularly inopportune at a time when opportunities for quantitative thinking about biological systems are exploding. We propose that a way out of this dilemma is a unified introductory science curriculum that fully incorporates mathematics and quantitative thinking.

1 Department of Physics, Princeton University, Princeton, NJ 08544, USA.
2 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
3 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

* To whom correspondence should be addressed. E-mail: botstein{at}princeton.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Controlled vocabularies and semantics in systems biology.
M. Courtot, N. Juty, C. Knupfer, D. Waltemath, A. Zhukova, A. Drager, M. Dumontier, A. Finney, M. Golebiewski, J. Hastings, et al. (2014)
Mol Syst Biol 7, 543
   Abstract »    Full Text »    PDF »
Integrating bioinformatics into senior high school: design principles and implications.
Y. Machluf and A. Yarden (2013)
Brief Bioinform 14, 648-660
   Abstract »    Full Text »    PDF »
On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education.
J. Feser, H. Vasaly, and J. Herrera (2013)
CBE Life Sci Educ 12, 124-128
   Full Text »    PDF »
Competency-Based Reforms of the Undergraduate Biology Curriculum: Integrating the Physical and Biological Sciences.
K. V. Thompson, J. Chmielewski, M. S. Gaines, C. A. Hrycyna, and W. R. LaCourse (2013)
CBE Life Sci Educ 12, 162-169
   Abstract »    Full Text »    PDF »
A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design.
J. S. Gouvea, V. Sawtelle, B. D. Geller, and C. Turpen (2013)
CBE Life Sci Educ 12, 187-205
   Abstract »    Full Text »    PDF »
Models of signalling networks - what cell biologists can gain from them and give to them.
K. A. Janes and D. A. Lauffenburger (2013)
J. Cell Sci. 126, 1913-1921
   Abstract »    Full Text »    PDF »
Interdisciplinary Graduate Training in Teaching Labs.
R. D. Vale, J. DeRisi, R. Phillips, R. D. Mullins, C. Waterman, and T. J. Mitchison (2012)
Science 338, 1542-1543
   Abstract »    Full Text »    PDF »
Developing a Test of Scientific Literacy Skills (TOSLS): Measuring Undergraduates' Evaluation of Scientific Information and Arguments.
C. Gormally, P. Brickman, and M. Lutz (2012)
CBE Life Sci Educ 11, 364-377
   Abstract »    Full Text »    PDF »
What Are They Thinking? Automated Analysis of Student Writing about Acid-Base Chemistry in Introductory Biology.
K. C. Haudek, L. B. Prevost, R. A. Moscarella, J. Merrill, and M. Urban-Lurain (2012)
CBE Life Sci Educ 11, 283-293
   Abstract »    Full Text »    PDF »
Bioinformatics applied to gene transcription regulation.
G. Altobelli (2012)
J. Mol. Endocrinol. 49, R51-R59
   Abstract »    Full Text »    PDF »
Heavy use of equations impedes communication among biologists.
T. W. Fawcett and A. D. Higginson (2012)
PNAS 109, 11735-11739
   Abstract »    Full Text »    PDF »
Mentoring Interdisciplinary Undergraduate Students via a Team Effort.
I. Karsai, J. Knisley, D. Knisley, L. Yampolsky, and A. Godbole (2011)
CBE Life Sci Educ 10, 250-258
   Abstract »    Full Text »    PDF »
Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses.
M. Colon-Berlingeri and P. A. Burrowes (2011)
CBE Life Sci Educ 10, 259-267
   Abstract »    Full Text »    PDF »
A Study Assessing the Potential of Negative Effects in Interdisciplinary Math-Biology Instruction.
A. Madlung, M. Bremer, E. Himelblau, and A. Tullis (2011)
CBE Life Sci Educ 10, 43-54
   Abstract »    Full Text »    PDF »
A Transformative Model for Undergraduate Quantitative Biology Education.
D. C. Usher, T. A. Driscoll, P. Dhurjati, J. A. Pelesko, L. F. Rossi, G. Schleiniger, K. Pusecker, and H. B. White (2010)
CBE Life Sci Educ 9, 181-188
   Abstract »    Full Text »    PDF »
Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines.
Y. V. Tra and I. M. Evans (2010)
CBE Life Sci Educ 9, 217-226
   Abstract »    Full Text »    PDF »
Using the Principles of BIO2010 to Develop an Introductory, Interdisciplinary Course for Biology Students.
K. E. Matthews, P. Adams, and M. Goos (2010)
CBE Life Sci Educ 9, 290-297
   Abstract »    Full Text »    PDF »
1, 2, 3, 4: Infusing Quantitative Literacy into Introductory Biology.
E. B. Speth, J. L. Momsen, G. A. Moyerbrailean, D. Ebert-May, T. M. Long, S. Wyse, and D. Linton (2010)
CBE Life Sci Educ 9, 323-332
   Abstract »    Full Text »    PDF »
Developing Student Collaborations across Disciplines, Distances, and Institutions.
J. Knisley and E. Behravesh (2010)
CBE Life Sci Educ 9, 364-369
   Abstract »    Full Text »    PDF »
Integrated Biology and Undergraduate Science Education: A New Biology Education for the Twenty-First Century?.
J. B. Labov, A. H. Reid, and K. R. Yamamoto (2010)
CBE Life Sci Educ 9, 10-16
   Full Text »    PDF »
Computing Has Changed Biology--Biology Education Must Catch Up.
P. Pevzner and R. Shamir (2009)
Science 325, 541-542
   Abstract »    Full Text »    PDF »
Enhancing Interdisciplinary, Mathematics, and Physical Science in an Undergraduate Life Science Program through Physical Chemistry.
D. P. Pursell (2009)
CBE Life Sci Educ 8, 15-28
   Abstract »    Full Text »    PDF »
Thoughts Not Our Own: Whatever Happened to Selective Attention?.
B. M. Stafford (2009)
Theory Culture Society 26, 275-293
   Abstract »    PDF »
An Imaging Roadmap for Biology Education: From Nanoparticles to Whole Organisms.
D. J. Kelley, R. J. Davidson, and D. L. Nelson (2008)
CBE Life Sci Educ 7, 202-209
   Abstract »    Full Text »    PDF »
Evolving research trends in bioinformatics.
C. Perez-Iratxeta, M. A. Andrade-Navarro, and J. D. Wren (2007)
Brief Bioinform 8, 88-95
   Abstract »    Full Text »    PDF »
Teaching principles of molecular evolution in an undergraduate bioinformatics course.
B. S. Chapman (2006)
FASEB J 20, A540
   Abstract »    Full Text »
How Effective Are Simulated Molecular-level Experiments for Teaching Diffusion and Osmosis?.
E. Meir, J. Perry, D. Stal, S. Maruca, and E. Klopfer (2005)
CBE Life Sci Educ 4, 235-248
   Abstract »    Full Text »    PDF »
Examining the architecture of cellular computing through a comparative study with a computer.
D. Wang and M. Gribskov (2005)
J R Soc Interface 2, 187-195
   Abstract »    Full Text »    PDF »
Points of View: The Interface of Mathematics and Biology: Interdisciplinarity and the Undergraduate Biology Curriculum: Finding a Balance.
L. J. Gross (2004)
CBE Life Sci Educ 3, 85-87
   Full Text »    PDF »
Points of View: The Interface of Mathematics and Biology: Intuition and Innumeracy.
R. Brent (2004)
CBE Life Sci Educ 3, 88-90
   Full Text »    PDF »
Bio2010: Unintended Consequences?.
E. Hoagland (2004)
BioScience 54, 381-382
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882