Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 303 (5659): 799-805

Copyright © 2004 by the American Association for the Advancement of Science

Inferring Cellular Networks Using Probabilistic Graphical Models

Nir Friedman

Abstract: High-throughput genome-wide molecular assays, which probe cellular networks from different perspectives, have become central to molecular biology. Probabilistic graphical models are useful for extracting meaningful biological insights from the resulting data sets. These models provide a concise representation of complex cellular networks by composing simpler submodels. Procedures based on well-understood principles for inferring such models from data facilitate a model-based methodology for analysis and discovery. This methodology and its capabilities are illustrated by several recent applications to gene expression data.

School of Computer Science and Engineering, Hebrew University, 91904 Jerusalem, Israel.

E-mail: nir{at}

Biological context networks: a mosaic view of the interactome.
J. Rachlin, D. D. Cohen, C. Cantor, and S. Kasif (2014)
Mol Syst Biol 2, 66
   Abstract »    Full Text »    PDF »
GPLEXUS: enabling genome-scale gene association network reconstruction and analysis for very large-scale expression data.
J. Li, H. Wei, T. Liu, and P. X. Zhao (2014)
Nucleic Acids Res. 42, e32
   Abstract »    Full Text »    PDF »
Reverse engineering and identification in systems biology: strategies, perspectives and challenges.
A. F. Villaverde and J. R. Banga (2014)
J R Soc Interface 11, 20130505
   Abstract »    Full Text »    PDF »
Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets.
Y. Rahmatallah, F. Emmert-Streib, and G. Glazko (2014)
Bioinformatics 30, 360-368
   Abstract »    Full Text »    PDF »
Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.
H. Sailem, V. Bousgouni, S. Cooper, and C. Bakal (2014)
Open Bio 4, 130132
   Abstract »    Full Text »    PDF »
The diminishing role of hubs in dynamical processes on complex networks.
R. Quax, A. Apolloni, and P. M. A. Sloot (2013)
J R Soc Interface 10, 20130568
   Abstract »    Full Text »    PDF »
hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests.
I. S. Jang, A. Margolin, and A. Califano (2013)
Interface Focus 3, 20130011
   Abstract »    Full Text »    PDF »
Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models.
J. P. Faria, R. Overbeek, F. Xia, M. Rocha, I. Rocha, and C. S. Henry (2013)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Transcriptional network predicts viral set point during acute HIV-1 infection.
H.-H. Chang, K. Soderberg, J. A. Skinner, J. Banchereau, D. Chaussabel, B. F. Haynes, M. Ramoni, and N. L. Letvin (2012)
JAMIA 19, 1103-1109
   Abstract »    Full Text »    PDF »
PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis.
S. Ng, E. A. Collisson, A. Sokolov, T. Goldstein, A. Gonzalez-Perez, N. Lopez-Bigas, C. Benz, D. Haussler, and J. M. Stuart (2012)
Bioinformatics 28, i640-i646
   Abstract »    Full Text »    PDF »
Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests.
J. Qi and T. Michoel (2012)
Bioinformatics 28, 2325-2332
   Abstract »    Full Text »    PDF »
SteinerNet: a web server for integrating 'omic' data to discover hidden components of response pathways.
N. Tuncbag, S. McCallum, S.-s. C. Huang, and E. Fraenkel (2012)
Nucleic Acids Res. 40, W505-W509
   Abstract »    Full Text »    PDF »
Using causal models to distinguish between neurogenesis-dependent and -independent effects on behaviour.
S. E. Lazic (2012)
J R Soc Interface 9, 907-917
   Abstract »    Full Text »    PDF »
Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks.
B. Haibe-Kains, C. Olsen, A. Djebbari, G. Bontempi, M. Correll, C. Bouton, and J. Quackenbush (2012)
Nucleic Acids Res. 40, D866-D875
   Abstract »    Full Text »    PDF »
Physical Module Networks: an integrative approach for reconstructing transcription regulation.
N. Novershtern, A. Regev, and N. Friedman (2011)
Bioinformatics 27, i177-i185
   Abstract »    Full Text »    PDF »
parmigene--a parallel R package for mutual information estimation and gene network reconstruction.
G. Sales and C. Romualdi (2011)
Bioinformatics 27, 1876-1877
   Abstract »    Full Text »    PDF »
Network clustering: probing biological heterogeneity by sparse graphical models.
S. Mukherjee and S. M. Hill (2011)
Bioinformatics 27, 994-1000
   Abstract »    Full Text »    PDF »
Mathematical Modeling of Molecular Data in Translational Medicine: Theoretical Considerations.
N. F. Marko and R. J. Weil (2010)
Science Translational Medicine 2, 56rv4
   Full Text »    PDF »
On reverse engineering of gene interaction networks using time course data with repeated measurements.
E. R. Morrissey, M. A. Juarez, K. J. Denby, and N. J. Burroughs (2010)
Bioinformatics 26, 2305-2312
   Abstract »    Full Text »    PDF »
Identification of the heart-type fatty acid-binding protein as a major gene for chicken fatty acid metabolism by Bayesian network analysis.
H. Li, G. Wu, J. Zhang, and N. Yang (2010)
Poultry Science 89, 1825-1833
   Abstract »    Full Text »    PDF »
Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
C. J. Vaske, S. C. Benz, J. Z. Sanborn, D. Earl, C. Szeto, J. Zhu, D. Haussler, and J. M. Stuart (2010)
Bioinformatics 26, i237-i245
   Abstract »    Full Text »    PDF »
Revealing strengths and weaknesses of methods for gene network inference.
D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky (2010)
PNAS 107, 6286-6291
   Abstract »    Full Text »    PDF »
PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces.
S. A. Assi, T. Tanaka, T. H. Rabbitts, and N. Fernandez-Fuentes (2010)
Nucleic Acids Res. 38, e86
   Abstract »    Full Text »    PDF »
Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.
O. Nir, C. Bakal, N. Perrimon, and B. Berger (2010)
Genome Res. 20, 372-380
   Abstract »    Full Text »    PDF »
Bayesian network analysis of targeting interactions in chromatin.
B. van Steensel, U. Braunschweig, G. J. Filion, M. Chen, J. G. van Bemmel, and T. Ideker (2010)
Genome Res. 20, 190-200
   Abstract »    Full Text »    PDF »
Toward the dynamic interactome: it's about time.
T. M. Przytycka, M. Singh, and D. K. Slonim (2010)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Identification of genes involved in the same pathways using a Hidden Markov Model-based approach.
A. Senf and X.-w. Chen (2009)
Bioinformatics 25, 2945-2954
   Abstract »    Full Text »    PDF »
Detection of Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: Multivariate Analysis of Published Data.
S. J. Lycett, M. J. Ward, F. I. Lewis, A. F. Y. Poon, S. L. Kosakovsky Pond, and A. J. L. Brown (2009)
J. Virol. 83, 9901-9910
   Abstract »    Full Text »    PDF »
Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
Y. Wang, X.-S. Zhang, and Y. Xia (2009)
Nucleic Acids Res. 37, 5943-5958
   Abstract »    Full Text »    PDF »
Mechanisms and Evolution of Control Logic in Prokaryotic Transcriptional Regulation.
S. A. F. T. van Hijum, M. H. Medema, and O. P. Kuipers (2009)
Microbiol. Mol. Biol. Rev. 73, 481-509
   Abstract »    Full Text »    PDF »
Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks.
S.-s. C. Huang and E. Fraenkel (2009)
Science Signaling 2, ra40
   Abstract »    Full Text »    PDF »
Computational methods for discovering gene networks from expression data.
W.-P. Lee and W.-S. Tzou (2009)
Brief Bioinform 10, 408-423
   Abstract »    Full Text »    PDF »
A multivariate regression approach to association analysis of a quantitative trait network.
S. Kim, K.-A. Sohn, and E. P. Xing (2009)
Bioinformatics 25, i204-i212
   Abstract »    Full Text »    PDF »
Statistical Methods for Studying Modularity: A Reply to Mitteroecker and Bookstein.
P. M. Magwene (2009)
Syst Biol
   Full Text »    PDF »
Uncovering the rules for protein-protein interactions from yeast genomic data.
J. Wang, C. Li, E. Wang, and X. Wang (2009)
PNAS 106, 3752-3757
   Abstract »    Full Text »    PDF »
Differential dependency network analysis to identify condition-specific topological changes in biological networks.
B. Zhang, H. Li, R. B. Riggins, M. Zhan, J. Xuan, Z. Zhang, E. P. Hoffman, R. Clarke, and Y. Wang (2009)
Bioinformatics 25, 526-532
   Abstract »    Full Text »    PDF »
Biological Resource Centers and Systems Biology.
Y. Wang and T. G. Lilburn (2009)
BioScience 59, 113-125
   Abstract »    Full Text »    PDF »
Complexity reduction in context-dependent DNA substitution models.
W. H. Majoros and U. Ohler (2009)
Bioinformatics 25, 175-182
   Abstract »    Full Text »    PDF »
Inferring differentiation pathways from gene expression.
I. G. Costa, S. Roepcke, C. Hafemeister, and A. Schliep (2008)
Bioinformatics 24, i156-i164
   Abstract »    Full Text »    PDF »
Identifying functional modules in protein-protein interaction networks: an integrated exact approach.
M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Muller (2008)
Bioinformatics 24, i223-i231
   Abstract »    Full Text »    PDF »
Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.
J. Kim, D. G. Bates, I. Postlethwaite, P. Heslop-Harrison, and K.-H. Cho (2008)
Bioinformatics 24, 1286-1292
   Abstract »    Full Text »    PDF »
A pattern recognition approach to infer time-lagged genetic interactions.
C.-L. Chuang, C.-H. Jen, C.-M. Chen, and G. S. Shieh (2008)
Bioinformatics 24, 1183-1190
   Abstract »    Full Text »    PDF »
Query-driven module discovery in microarray data.
T. Dhollander, Q. Sheng, K. Lemmens, B. De Moor, K. Marchal, and Y. Moreau (2007)
Bioinformatics 23, 2573-2580
   Abstract »    Full Text »    PDF »
Biological network mapping and source signal deduction.
M. P. Brynildsen, T.-Y. Wu, S.-S. Jang, and J. C. Liao (2007)
Bioinformatics 23, 1783-1791
   Abstract »    Full Text »    PDF »
Genomic characterization of perturbation sensitivity.
J. H. Ohn, J. Kim, and J. H. Kim (2007)
Bioinformatics 23, i354-i358
   Abstract »    Full Text »    PDF »
Computational modeling of Caenorhabditis elegans vulval induction.
X. Sun and P. Hong (2007)
Bioinformatics 23, i499-i507
   Abstract »    Full Text »    PDF »
Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
A. Fujita, J.R. Sato, H.M. Garay-Malpartida, P.A. Morettin, M.C. Sogayar, and C.E. Ferreira (2007)
Bioinformatics 23, 1623-1630
   Abstract »    Full Text »    PDF »
Bayesian methods in bioinformatics and computational systems biology.
D. J. Wilkinson (2007)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Refinement and expansion of signaling pathways: The osmotic response network in yeast.
I. Gat-Viks and R. Shamir (2007)
Genome Res. 17, 358-367
   Abstract »    Full Text »    PDF »
Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits.
J. Tegner, J. Skogsberg, and J. Bjorkegren (2007)
J. Lipid Res. 48, 267-277
   Abstract »    Full Text »    PDF »
Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.
T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff (2006)
PNAS 103, 19033-19038
   Abstract »    Full Text »    PDF »
Systems interface biology.
F. J Doyle III and J. Stelling (2006)
J R Soc Interface 3, 603-616
   Abstract »    Full Text »    PDF »
Phosphoproteomic analysis of Her2/neu signaling and inhibition.
R. Bose, H. Molina, A. S. Patterson, J. K. Bitok, B. Periaswamy, J. S. Bader, A. Pandey, and P. A. Cole (2006)
PNAS 103, 9773-9778
   Abstract »    Full Text »    PDF »
Machine learning in bioinformatics.
P. Larranaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Armananzas, G. Santafe, A. Perez, et al. (2006)
Brief Bioinform 7, 86-112
   Abstract »    Full Text »    PDF »
Scale-free networks in cell biology.
R. Albert (2005)
J. Cell Sci. 118, 4947-4957
   Abstract »    Full Text »    PDF »
Non-transcriptional pathway features reconstructed from secondary effects of RNA interference.
F. Markowetz, J. Bloch, and R. Spang (2005)
Bioinformatics 21, 4026-4032
   Abstract »    Full Text »    PDF »
Assessing the limits of genomic data integration for predicting protein networks.
L. J. Lu, Y. Xia, A. Paccanaro, H. Yu, and M. Gerstein (2005)
Genome Res. 15, 945-953
   Abstract »    Full Text »    PDF »
Intracellular Signaling: Spatial and Temporal Control.
I. I. Moraru and L. M. Loew (2005)
Physiology 20, 169-179
   Abstract »    Full Text »    PDF »
Selective integration of multiple biological data for supervised network inference.
T. Kato, K. Tsuda, and K. Asai (2005)
Bioinformatics 21, 2488-2495
   Abstract »    Full Text »    PDF »
Inferring gene transcriptional modulatory relations: a genetical genomics approach.
H. Li, L. Lu, K. F. Manly, E. J. Chesler, L. Bao, J. Wang, M. Zhou, R. W. Williams, and Y. Cui (2005)
Hum. Mol. Genet. 14, 1119-1125
   Abstract »    Full Text »    PDF »
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data.
K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan (2005)
Science 308, 523-529
   Abstract »    Full Text »    PDF »
Structure theorems and the dynamics of nitrogen catabolite repression in yeast.
E. M. Boczko, T. G. Cooper, T. Gedeon, K. Mischaikow, D. G. Murdock, S. Pratap, and K. S. Wells (2005)
PNAS 102, 5647-5652
   Abstract »    Full Text »    PDF »
An empirical Bayes approach to inferring large-scale gene association networks.
J. Schafer and K. Strimmer (2005)
Bioinformatics 21, 754-764
   Abstract »    Full Text »    PDF »
GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox.
P. Zimmermann, M. Hirsch-Hoffmann, L. Hennig, and W. Gruissem (2004)
Plant Physiology 136, 2621-2632
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882