Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 303 (5659): 844-848

Copyright © 2004 by the American Association for the Advancement of Science

In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2

Lyubomir T. Vassilev,1* Binh T. Vu,2 Bradford Graves,2 Daisy Carvajal,1 Frank Podlaski,1 Zoran Filipovic,1 Norman Kong,2 Ursula Kammlott,2 Christine Lukacs,2 Christian Klein,3 Nader Fotouhi,2 Emily A. Liu2

Abstract: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.

1 Department of Discovery Oncology, Roche Research Center, Hoffmann–La Roche, Inc., Nutley, NJ 07110, USA.
2 Department of Chemistry, Roche Research Center, Hoffmann–La Roche, Inc., Nutley, NJ 07110, USA.
3 Pharma Research, Roche Diagnostics GmbH, 82372 Penzberg, Germany.

* To whom correspondence should be addressed. E-mail: lyubomir.vassilev{at}

p53 and NF-{kappa}B Coregulate Proinflammatory Gene Responses in Human Macrophages.
J. M. Lowe, D. Menendez, P. R. Bushel, M. Shatz, E. L. Kirk, M. A. Troester, S. Garantziotis, M. B. Fessler, and M. A. Resnick (2014)
Cancer Res. 74, 2182-2192
   Abstract »    Full Text »    PDF »
p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation.
R. Brosh, R. Shalgi, A. Liran, G. Landan, K. Korotayev, G. H. Nguyen, E. Enerly, H. Johnsen, Y. Buganim, H. Solomon, et al. (2014)
Mol Syst Biol 4, 229
   Abstract »    Full Text »    PDF »
The Fluorescent Two-Hybrid Assay to Screen for Protein-Protein Interaction Inhibitors in Live Cells: Targeting the Interaction of p53 with Mdm2 and Mdm4.
L. Yurlova, M. Derks, A. Buchfellner, I. Hickson, M. Janssen, D. Morrison, I. Stansfield, C. J. Brown, F. J. Ghadessy, D. P. Lane, et al. (2014)
J Biomol Screen 19, 516-525
   Abstract »    Full Text »    PDF »
E3 ubiquitin ligases and human papillomavirus-induced carcinogenesis.
Z. Lou and S. Wang (2014)
Journal of International Medical Research 42, 247-260
   Abstract »    Full Text »    PDF »
Tumor suppressor p53 and its gain-of-function mutants in cancer.
J. Liu, C. Zhang, and Z. Feng (2014)
Acta Biochim Biophys Sin 46, 170-179
   Abstract »    Full Text »    PDF »
The regulation of MDM2 oncogene and its impact on human cancers.
Y. Zhao, H. Yu, and W. Hu (2014)
Acta Biochim Biophys Sin 46, 180-189
   Abstract »    Full Text »    PDF »
A Low-dose Arsenic-induced p53 Protein-mediated Metabolic Mechanism of Radiotherapy Protection.
S. Ganapathy, S. Xiao, M. Yang, M. Qi, D. E. Choi, C. S. Ha, J. B. Little, and Z.-M. Yuan (2014)
J. Biol. Chem. 289, 5340-5347
   Abstract »    Full Text »    PDF »
Rbm24, an RNA-binding Protein and a Target of p53, Regulates p21 Expression via mRNA Stability.
Y. Jiang, M. Zhang, Y. Qian, E. Xu, J. Zhang, and X. Chen (2014)
J. Biol. Chem. 289, 3164-3175
   Abstract »    Full Text »    PDF »
Nutlin-3a Efficacy in Sarcoma Predicted by Transcriptomic and Epigenetic Profiling.
K. I. Pishas, S. J. Neuhaus, M. T. Clayer, A. W. Schreiber, D. M. Lawrence, M. Perugini, R. J. Whitfield, G. Farshid, J. Manavis, S. Chryssidis, et al. (2014)
Cancer Res. 74, 921-931
   Abstract »    Full Text »    PDF »
CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases.
P. Sharma and A. Nag (2014)
Open Bio 4, 130217
   Abstract »    Full Text »    PDF »
Mechanisms of protein-folding diseases at a glance.
J. S. Valastyan and S. Lindquist (2014)
Dis. Model. Mech. 7, 9-14
   Abstract »    Full Text »    PDF »
Smoking, p53 Mutation, and Lung Cancer.
D. L. Gibbons, L. A. Byers, and J. M. Kurie (2014)
Mol. Cancer Res. 12, 3-13
   Abstract »    Full Text »    PDF »
The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer.
M. Heger, R. F. van Golen, M. Broekgaarden, and M. C. Michel (2013)
Pharmacol. Rev. 66, 222-307
   Abstract »    Full Text »    PDF »
Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.
L. X. T. Nguyen and B. S. Mitchell (2013)
PNAS 110, 20681-20686
   Abstract »    Full Text »    PDF »
Inhibition of Wee1 Sensitizes Cancer Cells to Antimetabolite Chemotherapeutics In Vitro and In Vivo, Independent of p53 Functionality.
A. A. Van Linden, D. Baturin, J. B. Ford, S. P. Fosmire, L. Gardner, C. Korch, P. Reigan, and C. C. Porter (2013)
Mol. Cancer Ther. 12, 2675-2684
   Abstract »    Full Text »    PDF »
MDMX contains an autoinhibitory sequence element.
M. Bista, M. Petrovich, and A. R. Fersht (2013)
PNAS 110, 17814-17819
   Abstract »    Full Text »    PDF »
Regulation of p53 is critical for vertebrate limb regeneration.
M. H. Yun, P. B. Gates, and J. P. Brockes (2013)
PNAS 110, 17392-17397
   Abstract »    Full Text »    PDF »
Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity.
F. Kopper, C. Bierwirth, M. Schon, M. Kunze, I. Elvers, D. Kranz, P. Saini, M. B. Menon, D. Walter, C. S. Sorensen, et al. (2013)
PNAS 110, 16856-16861
   Abstract »    Full Text »    PDF »
Dual Targeting of Wild-Type and Mutant p53 by Small Molecule RITA Results in the Inhibition of N-Myc and Key Survival Oncogenes and Kills Neuroblastoma Cells In Vivo and In Vitro.
M. Burmakin, Y. Shi, E. Hedstrom, P. Kogner, and G. Selivanova (2013)
Clin. Cancer Res. 19, 5092-5103
   Abstract »    Full Text »    PDF »
Stapled {alpha}-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.
Y. S. Chang, B. Graves, V. Guerlavais, C. Tovar, K. Packman, K.-H. To, K. A. Olson, K. Kesavan, P. Gangurde, A. Mukherjee, et al. (2013)
PNAS 110, E3445-E3454
   Abstract »    Full Text »    PDF »
The Novel Anticancer Agent JNJ-26854165 Induces Cell Death through Inhibition of Cholesterol Transport and Degradation of ABCA1.
R. J. Jones, D. Gu, C. C. Bjorklund, I. Kuiatse, A. T. Remaley, T. Bashir, V. Vreys, and R. Z. Orlowski (2013)
J. Pharmacol. Exp. Ther. 346, 381-392
   Abstract »    Full Text »    PDF »
Growth hormone is a cellular senescence target in pituitary and nonpituitary cells.
V. Chesnokova, C. Zhou, A. Ben-Shlomo, S. Zonis, Y. Tani, S.-G. Ren, and S. Melmed (2013)
PNAS 110, E3331-E3339
   Abstract »    Full Text »    PDF »
A cell-free approach to accelerate the study of protein-protein interactions in vitro.
E. Sierecki, N. Giles, M. Polinkovsky, M. Moustaqil, K. Alexandrov, and Y. Gambin (2013)
Interface Focus 3, 20130018
   Abstract »    Full Text »    PDF »
Nrf2 signalling promotes ex vivo tubular epithelial cell survival * and regeneration via murine double minute (MDM)-2.
J. H. Hagemann, D. Thomasova, S. R. Mulay, and H.-J. Anders (2013)
Nephrol. Dial. Transplant. 28, 2028-2037
   Abstract »    Full Text »    PDF »
MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma.
M. van der Deen, H. Taipaleenmaki, Y. Zhang, N. M. Teplyuk, A. Gupta, S. Cinghu, K. Shogren, A. Maran, M. J. Yaszemski, L. Ling, et al. (2013)
J. Biol. Chem. 288, 21307-21319
   Abstract »    Full Text »    PDF »
Nanoparticles Engineered with Rituximab and Loaded with Nutlin-3 Show Promising Therapeutic Activity in B-Leukemic Xenografts.
R. Voltan, P. Secchiero, B. Ruozi, F. Forni, C. Agostinis, L. Caruso, M. A. Vandelli, and G. Zauli (2013)
Clin. Cancer Res. 19, 3871-3880
   Abstract »    Full Text »    PDF »
Small molecule induced reactivation of mutant p53 in cancer cells.
X. Liu, R. Wilcken, A. C. Joerger, I. S. Chuckowree, J. Amin, J. Spencer, and A. R. Fersht (2013)
Nucleic Acids Res. 41, 6034-6044
   Abstract »    Full Text »    PDF »
NF-{kappa}B Regulates Radioresistance Mediated By {beta}1-Integrin in Three-Dimensional Culture of Breast Cancer Cells.
K. M. Ahmed, H. Zhang, and C. C. Park (2013)
Cancer Res. 73, 3737-3748
   Abstract »    Full Text »    PDF »
The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein.
D. Y. Kwon, M. Dimitriadi, B. Terzic, C. Cable, A. C. Hart, A. Chitnis, K. H. Fischbeck, and B. G. Burnett (2013)
Mol. Biol. Cell 24, 1863-1871
   Abstract »    Full Text »    PDF »
Prognostic impact and targeting of CRM1 in acute myeloid leukemia.
K. Kojima, S. M. Kornblau, V. Ruvolo, A. Dilip, S. Duvvuri, R. E. Davis, M. Zhang, Z. Wang, K. R. Coombes, N. Zhang, et al. (2013)
Blood 121, 4166-4174
   Abstract »    Full Text »    PDF »
Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis.
A. I. Nieminen, V. M. Eskelinen, H. M. Haikala, T. A. Tervonen, Y. Yan, J. I. Partanen, and J. Klefstrom (2013)
PNAS 110, E1839-E1848
   Abstract »    Full Text »    PDF »
A Network of Substrates of the E3 Ubiquitin Ligases MDM2 and HUWE1 Control Apoptosis Independently of p53.
M. Kurokawa, J. Kim, J. Geradts, K. Matsuura, L. Liu, X. Ran, W. Xia, T. J. Ribar, R. Henao, M. W. Dewhirst, et al. (2013)
Science Signaling 6, ra32
   Abstract »    Full Text »    PDF »
Activation of Lung p53 by Nutlin-3a Prevents and Reverses Experimental Pulmonary Hypertension.
N. Mouraret, E. Marcos, S. Abid, G. Gary-Bobo, M. Saker, A. Houssaini, J.-L. Dubois-Rande, L. Boyer, J. Boczkowski, G. Derumeaux, et al. (2013)
Circulation 127, 1664-1676
   Abstract »    Full Text »    PDF »
MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models.
C. Tovar, B. Graves, K. Packman, Z. Filipovic, B. H. M. Xia, C. Tardell, R. Garrido, E. Lee, K. Kolinsky, K.-H. To, et al. (2013)
Cancer Res. 73, 2587-2597
   Abstract »    Full Text »    PDF »
Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian Accumulation of p53 in Malignant Cells.
M. Horiguchi, S. Koyanagi, A. M. Hamdan, K. Kakimoto, N. Matsunaga, C. Yamashita, and S. Ohdo (2013)
Cancer Res. 73, 2639-2649
   Abstract »    Full Text »    PDF »
Murine Double Minute 2 and Its Association with Chemoradioresistance of Esophageal Squamous Cell Carcinoma.
Anticancer Res 33, 1463-1471
   Abstract »    Full Text »    PDF »
Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication.
I. Misiewicz-Krzeminska, M. E. Sarasquete, D. Quwaider, P. Krzeminski, F. V. Ticona, T. Paino, M. Delgado, A. Aires, E. M. Ocio, R. Garcia-Sanz, et al. (2013)
Haematologica 98, 640-648
   Abstract »    Full Text »    PDF »
Tenovin-D3, a Novel Small-Molecule Inhibitor of Sirtuin SirT2, Increases p21 (CDKN1A) Expression in a p53-Independent Manner.
A. R. McCarthy, M. C. C. Sachweh, M. Higgins, J. Campbell, C. J. Drummond, I. M. M. van Leeuwen, L. Pirrie, M. J. G. W. Ladds, N. J. Westwood, and S. Lain (2013)
Mol. Cancer Ther. 12, 352-360
   Abstract »    Full Text »    PDF »
Modulation of p53 C-Terminal Acetylation by mdm2, p14ARF, and Cytoplasmic SirT2.
I. M. M. van Leeuwen, M. Higgins, J. Campbell, A. R. McCarthy, M. C. C. Sachweh, A. M. Navarro, and S. Lain (2013)
Mol. Cancer Ther. 12, 471-480
   Abstract »    Full Text »    PDF »
Disrupting the Scaffold to Improve Focal Adhesion Kinase-Targeted Cancer Therapeutics.
W. G. Cance, E. Kurenova, T. Marlowe, and V. Golubovskaya (2013)
Science Signaling 6, pe10
   Abstract »    Full Text »    PDF »
Role of Ubiquitin Ligases and the Proteasome in Oncogenesis: Novel Targets for Anticancer Therapies.
L. N. Micel, J. J. Tentler, P. G. Smith, and G. S. Eckhardt (2013)
J. Clin. Oncol. 31, 1231-1238
   Abstract »    Full Text »    PDF »
Structural Basis for Cul3 Protein Assembly with the BTB-Kelch Family of E3 Ubiquitin Ligases.
P. Canning, C. D. O. Cooper, T. Krojer, J. W. Murray, A. C. W. Pike, A. Chaikuad, T. Keates, C. Thangaratnarajah, V. Hojzan, B. D. Marsden, et al. (2013)
J. Biol. Chem. 288, 7803-7814
   Abstract »    Full Text »    PDF »
A novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia.
J. Zhu, L. Zhou, G. Wu, H. Konig, X. Lin, G. Li, X.-L. Qiu, C.-F. Chen, C.-M. Hu, E. Goldblatt, et al. (2013)
EMBO Mol Med. 5, 353-365
   Abstract »    Full Text »    PDF »
Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia.
E. Wang, S. Kawaoka, M. Yu, J. Shi, T. Ni, W. Yang, J. Zhu, R. G. Roeder, and C. R. Vakoc (2013)
PNAS 110, 3901-3906
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus pUL29/28 and pUL38 Repression of p53-Regulated p21CIP1 and Caspase 1 Promoters during Infection.
J. P. Savaryn, J. M. Reitsma, T. M. Bigley, B. D. Halligan, Z. Qian, D. Yu, and S. S. Terhune (2013)
J. Virol. 87, 2463-2474
   Abstract »    Full Text »    PDF »
The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells.
T.-C. A. Johannessen, L. Prestegarden, A. Grudic, M. E. Hegi, B. B. Tysnes, and R. Bjerkvig (2013)
Neuro Oncology 15, 269-278
   Abstract »    Full Text »    PDF »
A Fluorescent-Based High-Throughput Screening Assay for Small Molecules That Inhibit the Interaction of MdmX with p53.
K. Tsuganezawa, Y. Nakagawa, M. Kato, S. Taruya, F. Takahashi, M. Endoh, R. Utata, M. Mori, N. Ogawa, T. Honma, et al. (2013)
J Biomol Screen 18, 191-198
   Abstract »    Full Text »    PDF »
Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1.
A. Laine, H. Sihto, C. Come, M. T. Rosenfeldt, A. Zwolinska, M. Niemela, A. Khanna, E. K. Chan, V.-M. Kahari, P.-L. Kellokumpu-Lehtinen, et al. (2013)
Cancer Discovery 3, 182-197
   Abstract »    Full Text »    PDF »
The Genomic Landscape of Breast Cancer as a Therapeutic Roadmap.
M. J. Ellis and C. M. Perou (2013)
Cancer Discovery 3, 27-34
   Abstract »    Full Text »    PDF »
Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.
I. Goldstein, N. Rivlin, O.-y. Shoshana, O. Ezra, S. Madar, N. Goldfinger, and V. Rotter (2013)
Carcinogenesis 34, 190-198
   Abstract »    Full Text »    PDF »
E3 Ubiquitin Ligase RNF126 Promotes Cancer Cell Proliferation by Targeting the Tumor Suppressor p21 for Ubiquitin-Mediated Degradation.
X. Zhi, D. Zhao, Z. Wang, Z. Zhou, C. Wang, W. Chen, R. Liu, and C. Chen (2013)
Cancer Res. 73, 385-394
   Abstract »    Full Text »    PDF »
Molecular Pathways: Targeting Mdm2 and Mdm4 in Cancer Therapy.
Q. Li and G. Lozano (2013)
Clin. Cancer Res. 19, 34-41
   Abstract »    Full Text »    PDF »
Ubiquitylation of p53 by the APC/C inhibitor Trim39.
L. Zhang, N.-J. Huang, C. Chen, W. Tang, and S. Kornbluth (2012)
PNAS 109, 20931-20936
   Abstract »    Full Text »    PDF »
The Cellular Ataxia Telangiectasia-Mutated Kinase Promotes Epstein-Barr Virus Lytic Reactivation in Response to Multiple Different Types of Lytic Reactivation-Inducing Stimuli.
S. R. Hagemeier, E. A. Barlow, Q. Meng, and S. C. Kenney (2012)
J. Virol. 86, 13360-13370
   Abstract »    Full Text »    PDF »
Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage.
M. Choi, J. Shi, S. H. Jung, X. Chen, and K.-H. Cho (2012)
Science Signaling 5, ra83
   Abstract »    Full Text »    PDF »
Synthetic miR-34a Mimics as a Novel Therapeutic Agent for Multiple Myeloma: In Vitro and In Vivo Evidence.
M. T. Di Martino, E. Leone, N. Amodio, U. Foresta, M. Lionetti, M. R. Pitari, M. E. G. Cantafio, A. Gulla, F. Conforti, E. Morelli, et al. (2012)
Clin. Cancer Res. 18, 6260-6270
   Abstract »    Full Text »    PDF »
DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy.
E. M. McNeil and D. W. Melton (2012)
Nucleic Acids Res. 40, 9990-10004
   Abstract »    Full Text »    PDF »
Estrogen receptor prevents p53-dependent apoptosis in breast cancer.
S. T. Bailey, H. Shin, T. Westerling, X. S. Liu, and M. Brown (2012)
PNAS 109, 18060-18065
   Abstract »    Full Text »    PDF »
Identification of HEXIM1 as a Positive Regulator of p53.
Q. J. Lew, Y. L. Chia, K. L. Chu, Y. T. Lam, M. Gurumurthy, S. Xu, K. P. Lam, N. Cheong, and S.-H. Chao (2012)
J. Biol. Chem. 287, 36443-36454
   Abstract »    Full Text »    PDF »
Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2.
S. M. Vogel, M. R. Bauer, A. C. Joerger, R. Wilcken, T. Brandt, D. B. Veprintsev, T. J. Rutherford, A. R. Fersht, and F. M. Boeckler (2012)
PNAS 109, 16906-16910
   Abstract »    Full Text »    PDF »
Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-{alpha} 2a specifically targets JAK2V617F-positive polycythemia vera cells.
M. Lu, X. Wang, Y. Li, J. Tripodi, G. Mosoyan, J. Mascarenhas, M. Kremyanskaya, V. Najfeld, and R. Hoffman (2012)
Blood 120, 3098-3105
   Abstract »    Full Text »    PDF »
Targeting Mutant p53 in Human Tumors.
B. D. Lehmann and J. A. Pietenpol (2012)
J. Clin. Oncol. 30, 3648-3650
   Full Text »    PDF »
p53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress.
N. Dioufa, I. Chatzistamou, E. Farmaki, A. G. Papavassiliou, and H. Kiaris (2012)
Experimental Biology and Medicine 237, 1173-1180
   Abstract »    Full Text »    PDF »
Drug Resistance to Inhibitors of the Human Double Minute-2 E3 Ligase Is Mediated by Point Mutations of p53, but Can Be Overcome with the p53 Targeting Agent RITA.
R. J. Jones, C. C. Bjorklund, V. Baladandayuthapani, D. J. Kuhn, and R. Z. Orlowski (2012)
Mol. Cancer Ther. 11, 2243-2253
   Abstract »    Full Text »    PDF »
Transcription Factor NFAT1 Activates the mdm2 Oncogene Independent of p53.
X. Zhang, Z. Zhang, J. Cheng, M. Li, W. Wang, W. Xu, H. Wang, and R. Zhang (2012)
J. Biol. Chem. 287, 30468-30476
   Abstract »    Full Text »    PDF »
Competitive Binding between Dynamic p53 Transactivation Subdomains to Human MDM2 Protein: IMPLICATIONS FOR REGULATING THE p53{middle dot}MDM2/MDMX INTERACTION.
B. Shan, D.-W. Li, L. Bruschweiler-Li, and R. Bruschweiler (2012)
J. Biol. Chem. 287, 30376-30384
   Abstract »    Full Text »    PDF »
Glucocorticoid Receptor Activation Inhibits p53-induced Apoptosis of MCF10Amyc Cells via Induction of Protein Kinase C{epsilon}.
M. H. Aziz, H. Shen, and C. G. Maki (2012)
J. Biol. Chem. 287, 29825-29836
   Abstract »    Full Text »    PDF »
Alternate Splicing of the p53 Inhibitor HDMX Offers a Superior Prognostic Biomarker than p53 Mutation in Human Cancer.
K. Lenos, A. M. Grawenda, K. Lodder, M. L. Kuijjer, A. F. A. S. Teunisse, E. Repapi, L. F. Grochola, F. Bartel, P. C. W. Hogendoorn, P. Wuerl, et al. (2012)
Cancer Res. 72, 4074-4084
   Abstract »    Full Text »    PDF »
The Human TLR Innate Immune Gene Family Is Differentially Influenced by DNA Stress and p53 Status in Cancer Cells.
M. Shatz, D. Menendez, and M. A. Resnick (2012)
Cancer Res. 72, 3948-3957
   Abstract »    Full Text »    PDF »
MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells.
B. Wang, L. Fang, H. Zhao, T. Xiang, and D. Wang (2012)
Acta Biochim Biophys Sin 44, 685-691
   Abstract »    Full Text »    PDF »
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization.
B. Graves, T. Thompson, M. Xia, C. Janson, C. Lukacs, D. Deo, P. Di Lello, D. Fry, C. Garvie, K.-S. Huang, et al. (2012)
PNAS 109, 11788-11793
   Abstract »    Full Text »    PDF »
Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications.
S. Fulda, K. Rajalingam, and I. Dikic (2012)
EMBO Mol Med. 4, 545-556
   Abstract »    Full Text »    PDF »
PepSite: prediction of peptide-binding sites from protein surfaces.
L. G. Trabuco, S. Lise, E. Petsalaki, and R. B. Russell (2012)
Nucleic Acids Res. 40, W423-W427
   Abstract »    Full Text »    PDF »
Nongenotoxic Apoptosis Inducers Do Not Produce Misleading Positive Results in the TK6 Cell-Based GADD45a-GFP Genotoxicity Assay.
C. H. Topham, N. Billinton, and R. M. Walmsley (2012)
Toxicol. Sci. 128, 79-91
   Abstract »    Full Text »    PDF »
Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas.
A. Kunkele, K. De Preter, L. Heukamp, T. Thor, K. W. Pajtler, W. Hartmann, M. Mittelbronn, M. A. Grotzer, H. E. Deubzer, F. Speleman, et al. (2012)
Neuro Oncology 14, 859-869
   Abstract »    Full Text »    PDF »
A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells.
L. E. Nelson, R. J. Valentine, J. M. Cacicedo, M.-S. Gauthier, Y. Ido, and N. B. Ruderman (2012)
Am J Physiol Cell Physiol 303, C4-C13
   Abstract »    Full Text »    PDF »
Novel Radiosensitizing Anticancer Therapeutics.
Anticancer Res 32, 2487-2499
   Abstract »    Full Text »    PDF »
p53 Dynamics Control Cell Fate.
J. E. Purvis, K. W. Karhohs, C. Mock, E. Batchelor, A. Loewer, and G. Lahav (2012)
Science 336, 1440-1444
   Abstract »    Full Text »    PDF »
A p53 Axis Regulates B Cell Receptor-Triggered, Innate Immune System-Driven B Cell Clonal Expansion.
H. Lee, S. Haque, J. Nieto, J. Trott, J. K. Inman, S. McCormick, N. Chiorazzi, and P. K. A. Mongini (2012)
J. Immunol. 188, 6093-6108
   Abstract »    Full Text »    PDF »
Perspectives on the Discovery of Small-Molecule Modulators for Epigenetic Processes.
Q. Lu, A. M. Quinn, M. P. Patel, S. F. Semus, A. P. Graves, D. Bandyopadhyay, A. J. Pope, and S. H. Thrall (2012)
J Biomol Screen 17, 555-571
   Abstract »    Full Text »    PDF »
Systems Kinomics Demonstrates Congo Basin Monkeypox Virus Infection Selectively Modulates Host Cell Signaling Responses as Compared to West African Monkeypox Virus.
J. Kindrachuk, R. Arsenault, A. Kusalik, K. N. Kindrachuk, B. Trost, S. Napper, P. B. Jahrling, and J. E. Blaney (2012)
Mol. Cell. Proteomics 11, M111.015701
   Abstract »    Full Text »    PDF »
Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay.
A. F. Robson, T. R. Hupp, F. Lickiss, K. L. Ball, K. Faulds, and D. Graham (2012)
PNAS 109, 8073-8078
   Abstract »    Full Text »    PDF »
M. Sczaniecka, K. Gladstone, S. Pettersson, L. McLaren, A.-S. Huart, and M. Wallace (2012)
J. Biol. Chem. 287, 14052-14068
   Abstract »    Full Text »    PDF »
A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53.
Q. Zhang, S. X. Zeng, Y. Zhang, Y. Zhang, D. Ding, Q. Ye, S. O. Meroueh, and H. Lu (2012)
EMBO Mol Med. 4, 298-312
   Abstract »    Full Text »    PDF »
MdmX Is Required for p53 Interaction with and Full Induction of the Mdm2 Promoter after Cellular Stress.
L. Biderman, M. V. Poyurovsky, Y. Assia, J. L. Manley, and C. Prives (2012)
Mol. Cell. Biol. 32, 1214-1225
   Abstract »    Full Text »    PDF »
Small molecules that bind the Mdm2 RING stabilize and activate p53.
P. Roxburgh, A. K. Hock, M. P. Dickens, M. Mezna, P. M. Fischer, and K. H. Vousden (2012)
Carcinogenesis 33, 791-798
   Abstract »    Full Text »    PDF »
p53 Pathway and Cancer Therapy.
D. P. Lane and C. F. Cheok (2012)
Am. Assoc. Cancer Res. Educ. Book 2012, 171-176
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882