Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5660): 1003-1006

Copyright © 2004 by the American Association for the Advancement of Science

Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering

Federico Valverde,1 Aidyn Mouradov,1* Wim Soppe,1* Dean Ravenscroft,1 Alon Samach,2 George Coupland1{dagger}

Abstract: Many plants flower in response to seasonal fluctuations in day length. The CONSTANS (CO) gene of Arabidopsis promotes flowering in long days. Flowering is induced when CO messenger RNA expression coincides with the exposure of plants to light. However, how this promotes CO activity is unknown. We show that light stabilizes nuclear CO protein in the evening, whereas in the morning or in darkness the protein is degraded by the proteasome. Photoreceptors regulate CO stability and act antagonistically to generate daily rhythms in CO abundance. This layer of regulation refines the circadian rhythm in CO messenger RNA and is central to the mechanism by which day length controls flowering.

1 Max Planck Institute for Plant Breeding, Carl-von-Linne Weg 10, D-50829 Cologne, Germany.
2 Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: coupland{at}mpiz-koeln.mpg.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum.
J. Drabešova, D. Chab, J. Kolař, K. Haškovcova, and H. Štorchova (2014)
J. Exp. Bot. 65, 2137-2146
   Abstract »    Full Text »    PDF »
Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.
A. O. Diallo, Z. Agharbaoui, M. A. Badawi, M. A. Ali-Benali, A. Moheb, M. Houde, and F. Sarhan (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses.
A.-R. Corrales, S. G. Nebauer, L. Carrillo, P. Fernandez-Nohales, J. Marques, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa, R.-V. Molina, et al. (2014)
J. Exp. Bot. 65, 995-1012
   Abstract »    Full Text »    PDF »
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
B. C. Thines, Y. Youn, M. I. Duarte, and F. G. Harmon (2014)
J. Exp. Bot. 65, 1141-1151
   Abstract »    Full Text »    PDF »
Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis.
M. I. Ortiz-Marchena, T. Albi, E. Lucas-Reina, F. E. Said, F. J. Romero-Campero, B. Cano, M. T. Ruiz, J. M. Romero, and F. Valverde (2014)
PLANT CELL 26, 565-584
   Abstract »    Full Text »    PDF »
The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis.
T. Jegu, D. Latrasse, M. Delarue, H. Hirt, S. Domenichini, F. Ariel, M. Crespi, C. Bergounioux, C. Raynaud, and M. Benhamed (2014)
PLANT CELL 26, 538-551
   Abstract »    Full Text »    PDF »
Flowering Time in Watermelon Is Associated with a Major Quantitative Trait Locus on Chromosome 3.
C. E. McGregor, V. Waters, T. Vashisth, and H. Abdel-Haleem (2014)
J. Amer. Soc. Hort. Sci. 139, 48-53
   Abstract »    Full Text »    PDF »
Light perception and signalling by phytochrome A.
J. J. Casal, A. N. Candia, and R. Sellaro (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The regulation of seasonal flowering in the Rosaceae.
T. Kurokura, N. Mimida, N. H. Battey, and T. Hytonen (2013)
J. Exp. Bot. 64, 4131-4141
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
Blue Light-Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean.
Y. Meng, H. Li, Q. Wang, B. Liu, and C. Lin (2013)
PLANT CELL 25, 4405-4420
   Abstract »    Full Text »    PDF »
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
M. Endo, Y. Tanigawa, T. Murakami, T. Araki, and A. Nagatani (2013)
PNAS 110, 18017-18022
   Abstract »    Full Text »    PDF »
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Y. Higuchi, T. Narumi, A. Oda, Y. Nakano, K. Sumitomo, S. Fukai, and T. Hisamatsu (2013)
PNAS 110, 17137-17142
   Abstract »    Full Text »    PDF »
Phytochrome C Is A Key Factor Controlling Long-Day Flowering in Barley.
H. Nishida, D. Ishihara, M. Ishii, T. Kaneko, H. Kawahigashi, Y. Akashi, D. Saisho, K. Tanaka, H. Handa, K. Takeda, et al. (2013)
Plant Physiology 163, 804-814
   Abstract »    Full Text »    PDF »
Dynamics of the Shade-Avoidance Response in Arabidopsis.
A. Ciolfi, G. Sessa, M. Sassi, M. Possenti, S. Salvucci, M. Carabelli, G. Morelli, and I. Ruberti (2013)
Plant Physiology 163, 331-353
   Abstract »    Full Text »    PDF »
Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
H.-Y. Yeang (2013)
J. Exp. Bot. 64, 2643-2652
   Abstract »    Full Text »    PDF »
TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis.
E. Ando, M. Ohnishi, Y. Wang, T. Matsushita, A. Watanabe, Y. Hayashi, M. Fujii, J. F. Ma, S.-i. Inoue, and T. Kinoshita (2013)
Plant Physiology 162, 1529-1538
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Changes in CsFT Transcript Abundance at the Onset of Low-temperature Floral Induction in Sweet Orange.
E. J. Chica and L. G. Albrigo (2013)
J. Amer. Soc. Hort. Sci. 138, 184-189
   Abstract »    Full Text »    PDF »
Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation.
W. Kim, T. I. Park, S. J. Yoo, A. R. Jun, and J. H. Ahn (2013)
J. Exp. Bot. 64, 1715-1729
   Abstract »    Full Text »    PDF »
Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana.
V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R. Feil, J. E. Lunn, M. Stitt, and M. Schmid (2013)
Science 339, 704-707
   Abstract »    Full Text »    PDF »
OsELF3 Is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice.
Y. Yang, Q. Peng, G.-X. Chen, X.-H. Li, and C.-Y. Wu (2013)
Mol Plant 6, 202-215
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Contributions of green light to plant growth and development.
Y. Wang and K. M. Folta (2013)
Am. J. Botany 100, 70-78
   Abstract »    Full Text »    PDF »
Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome.
N. Suetsugu and M. Wada (2013)
Plant Cell Physiol. 54, 8-23
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress.
J.-H. Jung, P. J. Seo, and C.-M. Park (2012)
J. Biol. Chem. 287, 43277-43287
   Abstract »    Full Text »    PDF »
The U-Box E3 Ligase SPL11/PUB13 Is a Convergence Point of Defense and Flowering Signaling in Plants.
J. Liu, W. Li, Y. Ning, G. Shirsekar, Y. Cai, X. Wang, L. Dai, Z. Wang, W. Liu, and G.-L. Wang (2012)
Plant Physiology 160, 28-37
   Full Text »    PDF »
The Phytochrome-Interacting VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis.
Y. Yasui, K. Mukougawa, M. Uemoto, A. Yokofuji, R. Suzuri, A. Nishitani, and T. Kohchi (2012)
PLANT CELL 24, 3248-3263
   Abstract »    Full Text »    PDF »
Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods.
A. Lepisto and E. Rintamaki (2012)
Mol Plant 5, 799-816
   Abstract »    Full Text »    PDF »
Mutation in TERMINAL FLOWER1 Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry Fragaria vesca.
E. A. Koskela, K. Mouhu, M. C. Albani, T. Kurokura, M. Rantanen, D. J. Sargent, N. H. Battey, G. Coupland, P. Elomaa, and T. Hytonen (2012)
Plant Physiology 159, 1043-1054
   Abstract »    Full Text »    PDF »
Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A.
G. Weidler, S. zur Oven-Krockhaus, M. Heunemann, C. Orth, F. Schleifenbaum, K. Harter, U. Hoecker, and A. Batschauer (2012)
PLANT CELL 24, 2610-2623
   Abstract »    Full Text »    PDF »
FKF1 Conveys Timing Information for CONSTANS Stabilization in Photoperiodic Flowering.
Y. H. Song, R. W. Smith, B. J. To, A. J. Millar, and T. Imaizumi (2012)
Science 336, 1045-1049
   Abstract »    Full Text »    PDF »
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.
S. Faure, A. S. Turner, D. Gruszka, V. Christodoulou, S. J. Davis, M. von Korff, and D. A. Laurie (2012)
PNAS 109, 8328-8333
   Abstract »    Full Text »    PDF »
LOV Domain-Containing F-Box Proteins: Light-Dependent Protein Degradation Modules in Arabidopsis.
S. Ito, Y. H. Song, and T. Imaizumi (2012)
Mol Plant 5, 573-582
   Abstract »    Full Text »    PDF »
GIGANTEA and EARLY FLOWERING 4 in Arabidopsis Exhibit Differential Phase-Specific Genetic Influences over a Diurnal Cycle.
Y. Kim, M. Yeom, H. Kim, J. Lim, H. J. Koo, D. Hwang, D. Somers, and H. G. Nam (2012)
Mol Plant 5, 678-687
   Abstract »    Full Text »    PDF »
The U-Box/ARM E3 Ligase PUB13 Regulates Cell Death, Defense, and Flowering Time in Arabidopsis.
W. Li, I.-P. Ahn, Y. Ning, C.-H. Park, L. Zeng, J. G. A. Whitehill, H. Lu, Q. Zhao, B. Ding, Q. Xie, et al. (2012)
Plant Physiology 159, 239-250
   Abstract »    Full Text »    PDF »
Ef7 Encodes an ELF3-like Protein and Promotes Rice Flowering by Negatively Regulating the Floral Repressor Gene Ghd7 under Both Short- and Long-Day Conditions.
H. Saito, E. Ogiso-Tanaka, Y. Okumoto, Y. Yoshitake, H. Izumi, T. Yokoo, K. Matsubara, K. Hori, M. Yano, H. Inoue, et al. (2012)
Plant Cell Physiol. 53, 717-728
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering.
A. Lazaro, F. Valverde, M. Pineiro, and J. A. Jarillo (2012)
PLANT CELL 24, 982-999
   Abstract »    Full Text »    PDF »
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis.
S. Ito, Y. H. Song, A. R. Josephson-Day, R. J. Miller, G. Breton, R. G. Olmstead, and T. Imaizumi (2012)
PNAS 109, 3582-3587
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis.
Y. Imura, Y. Kobayashi, S. Yamamoto, M. Furutani, M. Tasaka, M. Abe, and T. Araki (2012)
Plant Cell Physiol. 53, 287-303
   Abstract »    Full Text »    PDF »
Developmental Plasticity in Plants.
M. de Jong and O. Leyser (2012)
Cold Spring Harb Symp Quant Biol 77, 63-73
   Abstract »    Full Text »    PDF »
Molecular Dissection of the Roles of Phytochrome in Photoperiodic Flowering in Rice.
A. Osugi, H. Itoh, K. Ikeda-Kawakatsu, M. Takano, and T. Izawa (2011)
Plant Physiology 157, 1128-1137
   Abstract »    Full Text »    PDF »
A Role for Protein Kinase Casein Kinase2 {alpha}-Subunits in the Arabidopsis Circadian Clock.
S. X. Lu, H. Liu, S. M. Knowles, J. Li, L. Ma, E. M. Tobin, and C. Lin (2011)
Plant Physiology 157, 1537-1545
   Abstract »    Full Text »    PDF »
June bloom in Maratea.
F. Parcy and J. U. Lohmann (2011)
Development 138, 4335-4340
   Abstract »    Full Text »    PDF »
Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family.
R. Blanvillain, S. Wei, P. Wei, J. H. Kim, and D. W. Ow (2011)
EMBO J. 30, 3812-3822
   Abstract »    Full Text »    PDF »
Tissue-Specific Expression of FLOWERING LOCUS T in Arabidopsis Is Maintained Independently of Polycomb Group Protein Repression.
S. Farrona, F. L. Thorpe, J. Engelhorn, J. Adrian, X. Dong, L. Sarid-Krebs, J. Goodrich, and F. Turck (2011)
PLANT CELL 23, 3204-3214
   Abstract »    Full Text »    PDF »
Long-distance regulation of flowering time.
C. Turnbull (2011)
J. Exp. Bot. 62, 4399-4413
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability.
E. Seo, J. Yu, K. H. Ryu, M. M. Lee, and I. Lee (2011)
Plant Physiology 156, 1867-1877
   Abstract »    Full Text »    PDF »
GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.
M. Sawa and S. A. Kay (2011)
PNAS 108, 11698-11703
   Abstract »    Full Text »    PDF »
A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering.
S. Watanabe, Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, R. Takahashi, T. Anai, S. Tabata, K. Kitamura, et al. (2011)
Genetics 188, 395-407
   Abstract »    Full Text »    PDF »
The COP1 Ortholog PPS Regulates the Juvenile-Adult and Vegetative-Reproductive Phase Changes in Rice.
N. Tanaka, H. Itoh, N. Sentoku, M. Kojima, H. Sakakibara, T. Izawa, J.-I. Itoh, and Y. Nagato (2011)
PLANT CELL 23, 2143-2154
   Abstract »    Full Text »    PDF »
Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
R. Nefissi, Y. Natsui, K. Miyata, A. Oda, Y. Hase, M. Nakagawa, A. Ghorbel, and T. Mizoguchi (2011)
J. Exp. Bot. 62, 2731-2744
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
X. Meng, M. G. Muszynski, and O. N. Danilevskaya (2011)
PLANT CELL 23, 942-960
   Abstract »    Full Text »    PDF »
EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.
W. Wang, D. Yang, and K. A. Feldmann (2011)
J. Exp. Bot. 62, 1077-1088
   Abstract »    Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
Two Coordinately Regulated Homologs of FLOWERING LOCUS T Are Involved in the Control of Photoperiodic Flowering in Soybean.
F. Kong, B. Liu, Z. Xia, S. Sato, B. M. Kim, S. Watanabe, T. Yamada, S. Tabata, A. Kanazawa, K. Harada, et al. (2010)
Plant Physiology 154, 1220-1231
   Abstract »    Full Text »    PDF »
The Timing of Flowering.
R. M. Amasino and S. D. Michaels (2010)
Plant Physiology 154, 516-520
   Full Text »    PDF »
Conservation of Arabidopsis thaliana Photoperiodic Flowering Time Genes in Onion (Allium cepa L.).
A. Taylor, A. J. Massiah, and B. Thomas (2010)
Plant Cell Physiol. 51, 1638-1647
   Abstract »    Full Text »    PDF »
Functional Analysis of Amino-Terminal Domains of the Photoreceptor Phytochrome B.
A. Palagyi, K. Terecskei, E. Adam, E. Kevei, S. Kircher, Z. Merai, E. Schafer, F. Nagy, and L. Kozma-Bognar (2010)
Plant Physiology 153, 1834-1845
   Abstract »    Full Text »    PDF »
ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals.
A. G. Greenup, S. Sasani, S. N. Oliver, M. J. Talbot, E. S. Dennis, M. N. Hemming, and B. Trevaskis (2010)
Plant Physiology 153, 1062-1073
   Abstract »    Full Text »    PDF »
Regulation and function of SOC1, a flowering pathway integrator.
J. Lee and I. Lee (2010)
J. Exp. Bot. 61, 2247-2254
   Abstract »    Full Text »    PDF »
cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis.
J. Adrian, S. Farrona, J. J. Reimer, M. C. Albani, G. Coupland, and F. Turck (2010)
PLANT CELL 22, 1425-1440
   Abstract »    Full Text »    PDF »
DAY NEUTRAL FLOWERING Represses CONSTANS to Prevent Arabidopsis Flowering Early in Short Days.
K. Morris, S. Thornber, L. Codrai, C. Richardson, A. Craig, A. Sadanandom, B. Thomas, and S. Jackson (2010)
PLANT CELL 22, 1118-1128
   Abstract »    Full Text »    PDF »
Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time.
H. Chen, X. Huang, G. Gusmaroli, W. Terzaghi, O. S. Lau, Y. Yanagawa, Y. Zhang, J. Li, J.-H. Lee, D. Zhu, et al. (2010)
PLANT CELL 22, 108-123
   Abstract »    Full Text »    PDF »
Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths.
A. Giakountis, F. Cremer, S. Sim, M. Reymond, J. Schmitt, and G. Coupland (2010)
Plant Physiology 152, 177-191
   Abstract »    Full Text »    PDF »
Fine Mapping and Haplotype Structure Analysis of a Major Flowering Time Quantitative Trait Locus on Maize Chromosome 10.
S. Ducrocq, C. Giauffret, D. Madur, V. Combes, F. Dumas, S. Jouanne, D. Coubriche, P. Jamin, L. Moreau, and A. Charcosset (2009)
Genetics 183, 1555-1563
   Abstract »    Full Text »    PDF »
Analysis of PHOTOPERIOD SENSITIVITY5 Sheds Light on the Role of Phytochromes in Photoperiodic Flowering in Rice.
F. Andres, D. W. Galbraith, M. Talon, and C. Domingo (2009)
Plant Physiology 151, 681-690
   Abstract »    Full Text »    PDF »
Functional Analysis of FT and TFL1 Orthologs from Orchid (Oncidium Gower Ramsey) that Regulate the Vegetative to Reproductive Transition.
C.-J. Hou and C.-H. Yang (2009)
Plant Cell Physiol. 50, 1544-1557
   Abstract »    Full Text »    PDF »
Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae): Differential regulation by light and an endogenous clock.
C. C. Zheng, D. Potter, and S. D. O'Neill (2009)
Am. J. Botany 96, 1319-1336
   Abstract »    Full Text »    PDF »
From Decision to Commitment: The Molecular Memory of Flowering.
J. Adrian, S. Torti, and F. Turck (2009)
Mol Plant 2, 628-642
   Abstract »    Full Text »    PDF »
At the end of the day: a common molecular mechanism for photoperiod responses in plants?.
U. Lagercrantz (2009)
J. Exp. Bot. 60, 2501-2515
   Abstract »    Full Text »    PDF »
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
A. Greenup, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2009)
Ann. Bot. 103, 1165-1172
   Abstract »    Full Text »    PDF »
Tissue-Specific Expression Patterns of Arabidopsis NF-Y Transcription Factors Suggest Potential for Extensive Combinatorial Complexity.
N. Siefers, K. K. Dang, R. W. Kumimoto, W. E. Bynum IV, G. Tayrose, and B. F. Holt III (2009)
Plant Physiology 149, 625-641
   Abstract »    Full Text »    PDF »
Alterations in the Endogenous Ascorbic Acid Content Affect Flowering Time in Arabidopsis.
S. O. Kotchoni, K. E. Larrimore, M. Mukherjee, C. F. Kempinski, and C. Barth (2009)
Plant Physiology 149, 803-815
   Abstract »    Full Text »    PDF »
Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in Arabidopsis.
H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin (2008)
Science 322, 1535-1539
   Abstract »    Full Text »    PDF »
Effects of Plant Size and Weather on the Flowering Phenology of the Organ Pipe Cactus (Stenocereus thurberi).
E. Bustamante and A. Burquez (2008)
Ann. Bot. 102, 1019-1030
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882