Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5662): 1371-1374

Copyright © 2004 by the American Association for the Advancement of Science

Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase

Ingrid E. Wertz,1,4 Karen M. O'Rourke,1 Zemin Zhang,2 David Dornan,1 David Arnott,3 Raymond J. Deshaies,5 Vishva M. Dixit1*

Abstract: Arabidopsis thaliana De-etiolated-1 (AtDET1) is a highly conserved protein, with orthologs in vertebrate and invertebrate organisms. AtDET1 negatively regulates photomorphogenesis, but its biochemical mechanism and function in other species are unknown. We report that human DET1 (hDET1) promotes ubiquitination and degradation of the proto-oncogenic transcription factor c-Jun by assembling a multisubunit ubiquitin ligase containing DNA Damage Binding Protein-1 (DDB1), cullin 4A (CUL4A), Regulator of Cullins-1 (ROC1), and constitutively photomorphogenic-1. Ablation of any subunit by RNA interference stabilized c-Jun and increased c-Jun–activated transcription. These findings characterize a c-Jun ubiquitin ligase and define a specific function for hDET1 in mammalian cells.

1 Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA.
2 Department of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA.
3 Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
4 Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA.
5 Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

* To whom correspondence should be addressed. E-mail: dixit{at}gene.com


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling.
K. M. Wadosky, J. E. Rodriguez, R. L. Hite, J.-n. Min, B. L. Walton, and M. S. Willis (2014)
Am J Physiol Endocrinol Metab 306, E723-E739
   Abstract »    Full Text »    PDF »
Mechanism of immunomodulatory drugs' action in the treatment of multiple myeloma.
X. Chang, Y. Zhu, C. Shi, and A. K. Stewart (2014)
Acta Biochim Biophys Sin 46, 240-253
   Abstract »    Full Text »    PDF »
WASH inhibits autophagy through suppression of Beclin 1 ubiquitination.
P. Xia, S. Wang, Y. Du, Z. Zhao, L. Shi, L. Sun, G. Huang, B. Ye, C. Li, Z. Dai, et al. (2013)
EMBO J. 32, 2685-2696
   Abstract »    Full Text »    PDF »
COP1 targets C/EBP{alpha} for degradation and induces acute myeloid leukemia via Trib1.
A. Yoshida, J.-y. Kato, I. Nakamae, and N. Yoneda-Kato (2013)
Blood 122, 1750-1760
   Abstract »    Full Text »    PDF »
Differential Regulation of c-Jun Protein Plays an Instrumental Role in Chemoresistance of Cancer Cells.
Y. Xia, W. Yang, W. Bu, H. Ji, X. Zhao, Y. Zheng, X. Lin, Y. Li, and Z. Lu (2013)
J. Biol. Chem. 288, 19321-19329
   Abstract »    Full Text »    PDF »
Interaction of Constitutive Photomorphogenesis 1 Protein with Protein-Tyrosine Phosphatase 1B Suppresses Protein-Tyrosine Phosphatase 1B Activity and Enhances Insulin Signaling.
W. Ren, Y. Sun, S. Cheema, and K. Du (2013)
J. Biol. Chem. 288, 10902-10913
   Abstract »    Full Text »    PDF »
Modulation of Fatty Acid Synthase Degradation by Concerted Action of p38 MAP Kinase, E3 Ligase COP1, and SH2-Tyrosine Phosphatase Shp2.
J. Yu, R. Deng, H. H. Zhu, S. S. Zhang, C. Zhu, M. Montminy, R. Davis, and G.-S. Feng (2013)
J. Biol. Chem. 288, 3823-3830
   Abstract »    Full Text »    PDF »
Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus.
W. Li, J. Cooper, M. A. Karajannis, and F. G. Giancotti (2012)
EMBO Rep. 13, 204-215
   Abstract »    Full Text »    PDF »
It Takes 15 to Tango: Making Sense of the Many Ubiquitin Ligases of p53.
I. M. Love and S. R. Grossman (2012)
Genes & Cancer 3, 249-263
   Abstract »    Full Text »    PDF »
The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress.
E. Castells, J. Molinier, G. Benvenuto, C. Bourbousse, G. Zabulon, A. Zalc, S. Cazzaniga, P. Genschik, F. Barneche, and C. Bowler (2011)
EMBO J. 30, 1162-1172
   Abstract »    Full Text »    PDF »
Cullin-4A{middle dot}DNA Damage-binding Protein 1 E3 Ligase Complex Targets Tumor Suppressor RASSF1A for Degradation during Mitosis.
L. Jiang, R. Rong, M. S. Sheikh, and Y. Huang (2011)
J. Biol. Chem. 286, 6971-6978
   Abstract »    Full Text »    PDF »
Characterization of the Dictyostelium Homolog of Chromatin Binding Protein DET1 Suggests a Conserved Pathway Regulating Cell Type Specification and Developmental Plasticity.
M. J. Dubin, S. Kasten, and W. Nellen (2011)
Eukaryot. Cell 10, 352-362
   Abstract »    Full Text »    PDF »
14-3-3{sigma} Exerts Tumor-Suppressor Activity Mediated by Regulation of COP1 Stability.
C.-H. Su, R. Zhao, F. Zhang, C. Qu, B. Chen, Y.-H. Feng, L. Phan, J. Chen, H. Wang, H. Wang, et al. (2011)
Cancer Res. 71, 884-894
   Abstract »    Full Text »    PDF »
Hepatocyte-specific deletion of DDB1 induces liver regeneration and tumorigenesis.
S. Yamaji, M. Zhang, J. Zhang, Y. Endo, E. Bibikova, S. P. Goff, and Y. Cang (2010)
PNAS 107, 22237-22242
   Abstract »    Full Text »    PDF »
Cullins and Cancer.
J. Lee and P. Zhou (2010)
Genes & Cancer 1, 690-699
   Abstract »    Full Text »    PDF »
Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells.
S. H. Choi, J. B. Wright, S. A. Gerber, and M. D. Cole (2010)
Genes & Dev. 24, 1236-1241
   Abstract »    Full Text »    PDF »
HIV-1 Vpr Induces the K48-Linked Polyubiquitination and Proteasomal Degradation of Target Cellular Proteins To Activate ATR and Promote G2 Arrest.
J.-P. Belzile, J. Richard, N. Rougeau, Y. Xiao, and E. A. Cohen (2010)
J. Virol. 84, 3320-3330
   Abstract »    Full Text »    PDF »
Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time.
H. Chen, X. Huang, G. Gusmaroli, W. Terzaghi, O. S. Lau, Y. Yanagawa, Y. Zhang, J. Li, J.-H. Lee, D. Zhu, et al. (2010)
PLANT CELL 22, 108-123
   Abstract »    Full Text »    PDF »
E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1.
D.-Q. Li, K. Ohshiro, S. D. N. Reddy, S. B. Pakala, M.-H. Lee, Y. Zhang, S. K. Rayala, and R. Kumar (2009)
PNAS 106, 17493-17498
   Abstract »    Full Text »    PDF »
Candidate Biomarkers of Response to an Experimental Cancer Drug Identified through a Large-scale RNA Interference Genetic Screen.
J. Mullenders, W. von der Saal, M. M.W. van Dongen, U. Reiff, R. van Willigen, R. L. Beijersbergen, G. Tiefenthaler, C. Klein, and R. Bernards (2009)
Clin. Cancer Res. 15, 5811-5819
   Abstract »    Full Text »    PDF »
Negative regulation of NF-{kappa}B action by Set9-mediated lysine methylation of the RelA subunit.
X.-D. Yang, B. Huang, M. Li, A. Lamb, N. L. Kelleher, and L.-F. Chen (2009)
EMBO J. 28, 1055-1066
   Abstract »    Full Text »    PDF »
Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-{kappa}B.
T. Zhao, J.-i. Yasunaga, Y. Satou, M. Nakao, M. Takahashi, M. Fujii, and M. Matsuoka (2009)
Blood 113, 2755-2764
   Abstract »    Full Text »    PDF »
DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress.
V. Leung-Pineda, J. Huh, and H. Piwnica-Worms (2009)
Cancer Res. 69, 2630-2637
   Abstract »    Full Text »    PDF »
COP1 Functions as a FoxO1 Ubiquitin E3 Ligase to Regulate FoxO1-mediated Gene Expression.
S. Kato, J. Ding, E. Pisck, U. S. Jhala, and K. Du (2008)
J. Biol. Chem. 283, 35464-35473
   Abstract »    Full Text »    PDF »
Cellular Concentrations of DDB2 Regulate Dynamic Binding of DDB1 at UV-Induced DNA Damage.
S. Alekseev, M. S. Luijsterburg, A. Pines, B. Geverts, P.-O. Mari, G. Giglia-Mari, H. Lans, A. B. Houtsmuller, L. H. F. Mullenders, J. H. J. Hoeijmakers, et al. (2008)
Mol. Cell. Biol. 28, 7402-7413
   Abstract »    Full Text »    PDF »
Human T-cell Leukemia Virus Type 1 HBZ Protein Bypasses the Targeting Function of Ubiquitination.
O. Isono, T. Ohshima, Y. Saeki, J. Matsumoto, M. Hijikata, K. Tanaka, and K. Shimotohno (2008)
J. Biol. Chem. 283, 34273-34282
   Abstract »    Full Text »    PDF »
Lysosomal Localization of Ubiquitinated Jun Requires Multiple Determinants in a Lysine-27-Linked Polyubiquitin Conjugate.
H. Ikeda and T. K. Kerppola (2008)
Mol. Biol. Cell 19, 4588-4601
   Abstract »    Full Text »    PDF »
PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex.
T. Abbas, U. Sivaprasad, K. Terai, V. Amador, M. Pagano, and A. Dutta (2008)
Genes & Dev. 22, 2496-2506
   Abstract »    Full Text »    PDF »
Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis.
D. L. Waning, B. Li, N. Jia, Y. Naaldijk, W. S. Goebel, H. HogenEsch, and K. T. Chun (2008)
Blood 112, 320-329
   Abstract »    Full Text »    PDF »
JunB Breakdown in Mid-/Late G2 Is Required for Down-Regulation of Cyclin A2 Levels and Proper Mitosis.
R. Farras, V. Baldin, S. Gallach, C. Acquaviva, G. Bossis, I. Jariel-Encontre, and M. Piechaczyk (2008)
Mol. Cell. Biol. 28, 4173-4187
   Abstract »    Full Text »    PDF »
MicroRNA-155 Is an Epstein-Barr Virus-Induced Gene That Modulates Epstein-Barr Virus-Regulated Gene Expression Pathways.
Q. Yin, J. McBride, C. Fewell, M. Lacey, X. Wang, Z. Lin, J. Cameron, and E. K. Flemington (2008)
J. Virol. 82, 5295-5306
   Abstract »    Full Text »    PDF »
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
E. M. N. Dohmann, M. P. Levesque, L. De Veylder, I. Reichardt, G. Jurgens, M. Schmid, and C. Schwechheimer (2008)
Development 135, 2013-2022
   Abstract »    Full Text »    PDF »
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
S. Jang, V. Marchal, K. C. S. Panigrahi, S. Wenkel, W. Soppe, X.-W. Deng, F. Valverde, and G. Coupland (2008)
EMBO J. 27, 1277-1288
   Abstract »    Full Text »    PDF »
Transcriptional Profiling of high pigment-2dg Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients.
I. Kolotilin, H. Koltai, Y. Tadmor, C. Bar-Or, M. Reuveni, A. Meir, S. Nahon, H. Shlomo, L. Chen, and I. Levin (2007)
Plant Physiology 145, 389-401
   Abstract »    Full Text »    PDF »
Mammalian DET1 Regulates Cul4A Activity and Forms Stable Complexes with E2 Ubiquitin-Conjugating Enzymes.
E. Pick, O.-S. Lau, T. Tsuge, S. Menon, Y. Tong, N. Dohmae, S. M. Plafker, X. W. Deng, and N. Wei (2007)
Mol. Cell. Biol. 27, 4708-4719
   Abstract »    Full Text »    PDF »
Ubiquitin, Hormones and Biotic Stress in Plants.
K. Dreher and J. Callis (2007)
Ann. Bot. 99, 787-822
   Abstract »    Full Text »    PDF »
DDB2, DDB1A and DET1 Exhibit Complex Interactions During Arabidopsis Development.
W. M. Al Khateeb and D. F. Schroeder (2007)
Genetics 176, 231-242
   Abstract »    Full Text »    PDF »
SAG/ROC2/Rbx2 Is a Novel Activator Protein-1 Target that Promotes c-Jun Degradation and Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Neoplastic Transformation.
Q. Gu, M. Tan, and Y. Sun (2007)
Cancer Res. 67, 3616-3625
   Abstract »    Full Text »    PDF »
Characterization of the VIER F-BOX PROTEINE Genes from Arabidopsis Reveals Their Importance for Plant Growth and Development.
K. M. Schwager, L. I. A. Calderon-Villalobos, E. M.N. Dohmann, B. C. Willige, S. Knierer, C. Nill, and C. Schwechheimer (2007)
PLANT CELL 19, 1163-1178
   Abstract »    Full Text »    PDF »
PARC and CUL7 Form Atypical Cullin RING Ligase Complexes.
J. R. Skaar, L. Florens, T. Tsutsumi, T. Arai, A. Tron, S. K. Swanson, M. P. Washburn, and J. A. DeCaprio (2007)
Cancer Res. 67, 2006-2014
   Abstract »    Full Text »    PDF »
DDB1 is essential for genomic stability in developing epidermis.
Y. Cang, J. Zhang, S. A. Nicholas, A. L. Kim, P. Zhou, and S. P. Goff (2007)
PNAS 104, 2733-2737
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans Replication Licensing Factor CDT-1 Is Targeted for Degradation by the CUL-4/DDB-1 Complex.
Y. Kim and E. T. Kipreos (2007)
Mol. Cell. Biol. 27, 1394-1406
   Abstract »    Full Text »    PDF »
E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein.
M. Shirakura, K. Murakami, T. Ichimura, R. Suzuki, T. Shimoji, K. Fukuda, K. Abe, S. Sato, M. Fukasawa, Y. Yamakawa, et al. (2007)
J. Virol. 81, 1174-1185
   Abstract »    Full Text »    PDF »
MEKK1 Mediates the Ubiquitination and Degradation of c-Jun in Response to Osmotic Stress.
Y. Xia, J. Wang, S. Xu, G. L. Johnson, T. Hunter, and Z. Lu (2007)
Mol. Cell. Biol. 27, 510-517
   Abstract »    Full Text »    PDF »
Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases.
M. A. Bogoyevitch and B. Kobe (2006)
Microbiol. Mol. Biol. Rev. 70, 1061-1095
   Abstract »    Full Text »    PDF »
DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint.
C. L. Sansam, J. L. Shepard, K. Lai, A. Ianari, P. S. Danielian, A. Amsterdam, N. Hopkins, and J. A. Lees (2006)
Genes & Dev. 20, 3117-3129
   Abstract »    Full Text »    PDF »
DDB1 Maintains Genome Integrity through Regulation of Cdt1.
C. A. Lovejoy, K. Lock, A. Yenamandra, and D. Cortez (2006)
Mol. Cell. Biol. 26, 7977-7990
   Abstract »    Full Text »    PDF »
DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases..
Y. J. He, C. M. McCall, J. Hu, Y. Zeng, and Y. Xiong (2006)
Genes & Dev. 20, 2949-2954
   Abstract »    Full Text »    PDF »
The Tyrosine Kinase c-Abl Protects c-Jun from Ubiquitination-mediated Degradation in T Cells.
B. Gao, S.-M. Lee, and D. Fang (2006)
J. Biol. Chem. 281, 29711-29718
   Abstract »    Full Text »    PDF »
Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human Breast Cancer.
C. Chen, A. K. Seth, and A. E. Aplin (2006)
Mol. Cancer Res. 4, 695-707
   Abstract »    Full Text »    PDF »
Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.
H. Chen, Y. Shen, X. Tang, L. Yu, J. Wang, L. Guo, Y. Zhang, H. Zhang, S. Feng, E. Strickland, et al. (2006)
PLANT CELL 18, 1991-2004
   Abstract »    Full Text »    PDF »
CONSTITUTIVELY PHOTOMORPHOGENIC1 Is Required for the UV-B Response in Arabidopsis.
A. Oravecz, A. Baumann, Z. Mate, A. Brzezinska, J. Molinier, E. J. Oakeley, E. Adam, E. Schafer, F. Nagy, and R. Ulm (2006)
PLANT CELL 18, 1975-1990
   Abstract »    Full Text »    PDF »
TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism..
L. Qi, J. E. Heredia, J. Y. Altarejos, R. Screaton, N. Goebel, S. Niessen, I. X. MacLeod, C. W. Liew, R. N. Kulkarni, J. Bain, et al. (2006)
Science 312, 1763-1766
   Abstract »    Full Text »    PDF »
Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis.
B. Li, N. Jia, R. Kapur, and K. T. Chun (2006)
Blood 107, 4291-4299
   Abstract »    Full Text »    PDF »
Cul4A and DDB1 Associate with Skp2 To Target p27Kip1 for Proteolysis Involving the COP9 Signalosome.
T. Bondar, A. Kalinina, L. Khair, D. Kopanja, A. Nag, S. Bagchi, and P. Raychaudhuri (2006)
Mol. Cell. Biol. 26, 2531-2539
   Abstract »    Full Text »    PDF »
Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase.
C. Liu, M. Poitelea, A. Watson, S.-h. Yoshida, C. Shimoda, C. Holmberg, O. Nielsen, and A. M. Carr (2005)
EMBO J. 24, 3940-3951
   Abstract »    Full Text »    PDF »
Simian Virus 5 V Protein Acts as an Adaptor, Linking DDB1 to STAT2, To Facilitate the Ubiquitination of STAT1.
B. Precious, K. Childs, V. Fitzpatrick-Swallow, S. Goodbourn, and R. E. Randall (2005)
J. Virol. 79, 13434-13441
   Abstract »    Full Text »    PDF »
Composition and Assembly of STAT-Targeting Ubiquitin Ligase Complexes: Paramyxovirus V Protein Carboxyl Terminus Is an Oligomerization Domain.
C. M. Ulane, A. Kentsis, C. D. Cruz, J.-P. Parisien, K. L. Schneider, and C. M. Horvath (2005)
J. Virol. 79, 10180-10189
   Abstract »    Full Text »    PDF »
A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation.
P. J. Horn, J.-N. Bastie, and C. L. Peterson (2005)
Genes & Dev. 19, 1705-1714
   Abstract »    Full Text »    PDF »
Dimerization of CUL7 and PARC Is Not Required for All CUL7 Functions and Mouse Development.
J. R. Skaar, T. Arai, and J. A. DeCaprio (2005)
Mol. Cell. Biol. 25, 5579-5589
   Abstract »    Full Text »    PDF »
Major Vault Protein, in Concert with Constitutively Photomorphogenic 1, Negatively Regulates c-Jun-Mediated Activator Protein 1 Transcription in Mammalian Cells.
C. Yi, S. Li, X. Chen, E. A.C. Wiemer, J. Wang, N. Wei, and X. W. Deng (2005)
Cancer Res. 65, 5835-5840
   Abstract »    Full Text »    PDF »
Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 Signalosome Subunit 5 Is Sufficient to Cause the cop/det/fus Mutant Phenotype in Arabidopsis.
E. M.N. Dohmann, C. Kuhnle, and C. Schwechheimer (2005)
PLANT CELL 17, 1967-1978
   Abstract »    Full Text »    PDF »
Cullins 3a and 3b Assemble with Members of the Broad Complex/Tramtrack/Bric-a-Brac (BTB) Protein Family to Form Essential Ubiquitin-Protein Ligases (E3s) in Arabidopsis.
D. J. Gingerich, J. M. Gagne, D. W. Salter, H. Hellmann, M. Estelle, L. Ma, and R. D. Vierstra (2005)
J. Biol. Chem. 280, 18810-18821
   Abstract »    Full Text »    PDF »
Ubiquitin Chains in the Ladder of MAPK Signaling.
A. Laine and Z. Ronai (2005)
Sci. STKE 2005, re5
   Abstract »    Full Text »    PDF »
Hepatitis B Virus X Protein Stimulates Viral Genome Replication via a DDB1-Dependent Pathway Distinct from That Leading to Cell Death.
O. Leupin, S. Bontron, C. Schaeffer, and M. Strubin (2005)
J. Virol. 79, 4238-4245
   Abstract »    Full Text »    PDF »
Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis.
J. Yang, R. Lin, J. Sullivan, U. Hoecker, B. Liu, L. Xu, X. W. Deng, and H. Wang (2005)
PLANT CELL 17, 804-821
   Abstract »    Full Text »    PDF »
Role for the pleckstrin homology domain-containing protein CKIP-1 in AP-1 regulation and apoptosis.
L. Zhang, G. Xing, Y. Tie, Y. Tang, C. Tian, L. Li, L. Sun, H. Wei, Y. Zhu, and F. He (2005)
EMBO J. 24, 766-778
   Abstract »    Full Text »    PDF »
In vitro and in vivo specificity of ubiquitination and degradation of STAT1 and STAT2 by the V proteins of the paramyxoviruses simian virus 5 and human parainfluenza virus type 2.
B. Precious, D. F. Young, L. Andrejeva, S. Goodbourn, and R. E. Randall (2005)
J. Gen. Virol. 86, 151-158
   Abstract »    Full Text »    PDF »
Cryptochromes and Phytochromes Synergistically Regulate Arabidopsis Root Greening under Blue Light.
T. Usami, N. Mochizuki, M. Kondo, M. Nishimura, and A. Nagatani (2004)
Plant Cell Physiol. 45, 1798-1808
   Abstract »    Full Text »    PDF »
The Ubiquitin-Proteasome Pathway and Plant Development.
J. Moon, G. Parry, and M. Estelle (2004)
PLANT CELL 16, 3181-3195
   Full Text »    PDF »
Cul4A Physically Associates with MDM2 and Participates in the Proteolysis of p53.
A. Nag, S. Bagchi, and P. Raychaudhuri (2004)
Cancer Res. 64, 8152-8155
   Abstract »    Full Text »    PDF »
Targeted Disruption of Drosophila Roc1b Reveals Functional Differences in the Roc Subunit of Cullin-dependent E3 Ubiquitin Ligases.
T. D. Donaldson, M. A. Noureddine, P. J. Reynolds, W. Bradford, and R. J. Duronio (2004)
Mol. Biol. Cell 15, 4892-4903
   Abstract »    Full Text »    PDF »
COP1, the Negative Regulator of p53, Is Overexpressed in Breast and Ovarian Adenocarcinomas.
D. Dornan, S. Bheddah, K. Newton, W. Ince, G. D. Frantz, P. Dowd, H. Koeppen, V. M. Dixit, and D. M. French (2004)
Cancer Res. 64, 7226-7230
   Abstract »    Full Text »    PDF »
Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes.
D. Fang and T. K. Kerppola (2004)
PNAS 101, 14782-14787
   Abstract »    Full Text »    PDF »
Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes.
Y. Yanagawa, J. A. Sullivan, S. Komatsu, G. Gusmaroli, G. Suzuki, J. Yin, T. Ishibashi, Y. Saijo, V. Rubio, S. Kimura, et al. (2004)
Genes & Dev. 18, 2172-2181
   Abstract »    Full Text »    PDF »
Arabidopsis CAND1, an Unmodified CUL1-Interacting Protein, Is Involved in Multiple Developmental Pathways Controlled by Ubiquitin/Proteasome-Mediated Protein Degradation.
S. Feng, Y. Shen, J. A. Sullivan, V. Rubio, Y. Xiong, T.-p. Sun, and X. W. Deng (2004)
PLANT CELL 16, 1870-1882
   Abstract »    Full Text »    PDF »
Positioning Arabidopsis in Plant Biology. A Key Step Toward Unification of Plant Research.
M. Bevan and S. Walsh (2004)
Plant Physiology 135, 602-606
   Abstract »    Full Text »    PDF »
Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family.
L. Pintard, A. Willems, and M. Peter (2004)
EMBO J. 23, 1681-1687
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882