Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 303 (5663): 1508-1511

Copyright © 2004 by the American Association for the Advancement of Science

Dynamic Interaction of Stargazin-like TARPs with Cycling AMPA Receptors at Synapses

Susumu Tomita,1 Masaki Fukata,1 Roger A. Nicoll,1,2 David S. Bredt1*

Abstract: Activity-dependent plasticity in the brain arises in part from changes in the number of synaptic AMPA receptors. Synaptic trafficking of AMPA receptors is controlled by stargazin and homologous transmembrane AMPA receptor regulatory proteins (TARPs). We found that TARPs were stable at the plasma membrane, whereas AMPA receptors were internalized in a glutamate-regulated manner. Interaction with AMPA receptors involved both extra- and intracellular determinants of TARPs. Upon binding to glutamate, AMPA receptors detached from TARPs. This did not require ion flux or intracellular second messengers. This allosteric mechanism for AMPA receptor dissociation from TARPs may participate in glutamate-mediated internalization of receptors in synaptic plasticity.

1 Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–2140, USA.
2 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143–2140, USA.

* To whom correspondence should be addressed. E-mail: bredt{at}itsa.ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Local palmitoylation cycles define activity-regulated postsynaptic subdomains.
Y. Fukata, A. Dimitrov, G. Boncompain, O. Vielemeyer, F. Perez, and M. Fukata (2013)
J. Cell Biol. 202, 145-161
   Abstract »    Full Text »    PDF »
Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.
A. Sumioka (2013)
J. Biochem. 153, 331-337
   Abstract »    Full Text »    PDF »
AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.
P. Hastie, M. H. Ulbrich, H.-L. Wang, R. J. Arant, A. G. Lau, Z. Zhang, E. Y. Isacoff, and L. Chen (2013)
PNAS 110, 5163-5168
   Abstract »    Full Text »    PDF »
Genetic Deletion of NP1 Prevents Hypoxic-Ischemic Neuronal Death Via Reducing AMPA Receptor Synaptic Localization in Hippocampal Neurons.
M. A. Rahim and M. A. Hossain (2013)
JAHA 2, e006098
   Abstract »    Full Text »    PDF »
TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states.
C. Shelley, M. Farrant, and S. G. Cull-Candy (2012)
J. Physiol. 590, 5723-5738
   Abstract »    Full Text »    PDF »
Photochemical Inactivation Analysis of Temporal Dynamics of Postsynaptic Native AMPA Receptors in Hippocampal Slices.
H. Kamiya (2012)
J. Neurosci. 32, 6517-6524
   Abstract »    Full Text »    PDF »
Defined criteria for auxiliary subunits of glutamate receptors.
D. Yan and S. Tomita (2012)
J. Physiol. 590, 21-31
   Abstract »    Full Text »    PDF »
SynDIG1 regulation of excitatory synapse maturation.
E. Diaz (2012)
J. Physiol. 590, 33-38
   Abstract »    Full Text »    PDF »
Neurexin-Neuroligin Adhesions Capture Surface-Diffusing AMPA Receptors through PSD-95 Scaffolds.
M. Mondin, V. Labrousse, E. Hosy, M. Heine, B. Tessier, F. Levet, C. Poujol, C. Blanchet, D. Choquet, and O. Thoumine (2011)
J. Neurosci. 31, 13500-13515
   Abstract »    Full Text »    PDF »
The {beta} Subunit of Voltage-Gated Ca2+ Channels.
Z. Buraei and J. Yang (2010)
Physiol Rev 90, 1461-1506
   Abstract »    Full Text »    PDF »
Glutamate Receptor Ion Channels: Structure, Regulation, and Function.
S. F. Traynelis, L. P. Wollmuth, C. J. McBain, F. S. Menniti, K. M. Vance, K. K. Ogden, K. B. Hansen, H. Yuan, S. J. Myers, and R. Dingledine (2010)
Pharmacol. Rev. 62, 405-496
   Abstract »    Full Text »    PDF »
AMPA receptor subunits define properties of state-dependent synaptic plasticity.
M. R. Emond, J. M. Montgomery, M. L. Huggins, J. E. Hanson, L. Mao, R. L. Huganir, and D. V. Madison (2010)
J. Physiol. 588, 1929-1946
   Abstract »    Full Text »    PDF »
Regulation of Ionotropic Glutamate Receptors by Their Auxiliary Subunits.
S. Tomita (2010)
Physiology 25, 41-49
   Abstract »    Full Text »    PDF »
Assembly and Stoichiometry of the AMPA Receptor and Transmembrane AMPA Receptor Regulatory Protein Complex.
K. S. Kim, D. Yan, and S. Tomita (2010)
J. Neurosci. 30, 1064-1072
   Abstract »    Full Text »    PDF »
S-nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptors.
B. Selvakumar, R. L. Huganir, and S. H. Snyder (2009)
PNAS 106, 16440-16445
   Abstract »    Full Text »    PDF »
Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95.
J. Noritake, Y. Fukata, T. Iwanaga, N. Hosomi, R. Tsutsumi, N. Matsuda, H. Tani, H. Iwanari, Y. Mochizuki, T. Kodama, et al. (2009)
J. Cell Biol. 186, 147-160
   Abstract »    Full Text »    PDF »
Synaptic Scaling Requires the GluR2 Subunit of the AMPA Receptor.
M. A. Gainey, J. R. Hurvitz-Wolff, M. E. Lambo, and G. G. Turrigiano (2009)
J. Neurosci. 29, 6479-6489
   Abstract »    Full Text »    PDF »
Synaptic SAP97 Isoforms Regulate AMPA Receptor Dynamics and Access to Presynaptic Glutamate.
C. L. Waites, C. G. Specht, K. Hartel, S. Leal-Ortiz, D. Genoux, D. Li, R. C. Drisdel, O. Jeyifous, J. E. Cheyne, W. N. Green, et al. (2009)
J. Neurosci. 29, 4332-4345
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: More AMPAR Garnish.
C. Tigaret and D. Choquet (2009)
Science 323, 1295-1296
   Abstract »    Full Text »    PDF »
Agonist Occupancy Is Essential for Forward Trafficking of AMPA Receptors.
S. K. Coleman, T. Moykkynen, A. Jouppila, S. Koskelainen, C. Rivera, E. R Korpi, and K. Keinanen (2009)
J. Neurosci. 29, 303-312
   Abstract »    Full Text »    PDF »
The Stargazin-Related Protein {gamma}7 Interacts with the mRNA-Binding Protein Heterogeneous Nuclear Ribonucleoprotein A2 and Regulates the Stability of Specific mRNAs, Including CaV2.2.
L. Ferron, A. Davies, K. M. Page, D. J. Cox, J. Leroy, D. Waithe, A. J. Butcher, P. Sellaturay, S. Bolsover, W. S. Pratt, et al. (2008)
J. Neurosci. 28, 10604-10617
   Abstract »    Full Text »    PDF »
AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity.
S. Tomita, R. K. Byrd, N. Rouach, C. Bellone, A. Venegas, J. L. O'Brien, K. S. Kim, O. Olsen, R. A. Nicoll, and D. S. Bredt (2007)
PNAS 104, 18784-18788
   Abstract »    Full Text »    PDF »
Stargazin Interaction with {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazole Propionate (AMPA) Receptors Is Critically Dependent on the Amino Acid at the Narrow Constriction of the Ion Channel.
C. Korber, M. Werner, J. Hoffmann, C. Sager, M. Tietze, S. M. Schmid, S. Kott, and M. Hollmann (2007)
J. Biol. Chem. 282, 18758-18766
   Abstract »    Full Text »    PDF »
New Transmembrane AMPA Receptor Regulatory Protein Isoform, {gamma}-7, Differentially Regulates AMPA Receptors.
A. S. Kato, W. Zhou, A. D. Milstein, M. D. Knierman, E. R. Siuda, J. E. Dotzlaf, H. Yu, J. E. Hale, E. S. Nisenbaum, R. A. Nicoll, et al. (2007)
J. Neurosci. 27, 4969-4977
   Abstract »    Full Text »    PDF »
Different Domains of the AMPA Receptor Direct Stargazin-mediated Trafficking and Stargazin-mediated Modulation of Kinetics.
M. A. Bedoukian, A. M. Weeks, and K. M. Partin (2006)
J. Biol. Chem. 281, 23908-23921
   Abstract »    Full Text »    PDF »
K+-ATP-channel-related protein complexes: potential transducers in the regulation of epithelial tight junction permeability.
T. Jons, D. Wittschieber, A. Beyer, C. Meier, A. Brune, A. Thomzig, G. Ahnert-Hilger, and R. W. Veh (2006)
J. Cell Sci. 119, 3087-3097
   Abstract »    Full Text »    PDF »
Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain..
F. Deng, M. G. Price, C. F. Davis, M. Mori, and D. L. Burgess (2006)
J. Neurosci. 26, 7875-7884
   Abstract »    Full Text »    PDF »
Role of the neurogranin concentrated in spines in the induction of long-term potentiation..
A. M. Zhabotinsky, R. N. Camp, I. R. Epstein, and J. E. Lisman (2006)
J. Neurosci. 26, 7337-7347
   Abstract »    Full Text »    PDF »
Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins.
C. S. Walker, P. J. Brockie, D. M. Madsen, M. M. Francis, Y. Zheng, S. Koduri, J. E. Mellem, N. Strutz-Seebohm, and A. V. Maricq (2006)
PNAS 103, 10781-10786
   Abstract »    Full Text »    PDF »
Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization.
C. S. Walker, M. M. Francis, P. J. Brockie, D. M. Madsen, Y. Zheng, and A. V. Maricq (2006)
PNAS 103, 10787-10792
   Abstract »    Full Text »    PDF »
Stargazin controls the pharmacology of AMPA receptor potentiators.
S. Tomita, M. Sekiguchi, K. Wada, R. A. Nicoll, and D. S. Bredt (2006)
PNAS 103, 10064-10067
   Abstract »    Full Text »    PDF »
State-dependent AMPA receptor trafficking in the Mammalian retina..
Y. Xia, R. C. Carroll, and S. Nawy (2006)
J. Neurosci. 26, 5028-5036
   Abstract »    Full Text »    PDF »
Auxiliary Subunits Assist AMPA-Type Glutamate Receptors..
R. A. Nicoll, S. Tomita, and D. S. Bredt (2006)
Science 311, 1253-1256
   Abstract »    Full Text »    PDF »
Stargazin Modulates Native AMPA Receptor Functional Properties by Two Distinct Mechanisms.
D. Turetsky, E. Garringer, and D. K. Patneau (2005)
J. Neurosci. 25, 7438-7448
   Abstract »    Full Text »    PDF »
The Molecular Pharmacology and Cell Biology of {alpha}-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors.
C. L. Palmer, L. Cotton, and J. M. Henley (2005)
Pharmacol. Rev. 57, 253-277
   Abstract »    Full Text »    PDF »
The {alpha}-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionate Receptor Trafficking Regulator "Stargazin" Is Related to the Claudin Family of Proteins by Its Ability to Mediate Cell-Cell Adhesion.
M. G. Price, C. F. Davis, F. Deng, and D. L. Burgess (2005)
J. Biol. Chem. 280, 19711-19720
   Abstract »    Full Text »    PDF »
The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus.
H. Rosch, R. Schweigreiter, T. Bonhoeffer, Y.-A. Barde, and M. Korte (2005)
PNAS 102, 7362-7367
   Abstract »    Full Text »    PDF »
Molecular constituents of neuronal AMPA receptors.
Y. Fukata, A. V. Tzingounis, J. C. Trinidad, M. Fukata, A. L. Burlingame, R. A. Nicoll, and D. S. Bredt (2005)
J. Cell Biol. 169, 399-404
   Abstract »    Full Text »    PDF »
Stargazin Reduces Desensitization and Slows Deactivation of the AMPA-Type Glutamate Receptors.
A. Priel, A. Kolleker, G. Ayalon, M. Gillor, P. Osten, and Y. Stern-Bach (2005)
J. Neurosci. 25, 2682-2686
   Abstract »    Full Text »    PDF »
Interaction with the Unfolded Protein Response Reveals a Role for Stargazin in Biosynthetic AMPA Receptor Transport.
W. Vandenberghe, R. A. Nicoll, and D. S. Bredt (2005)
J. Neurosci. 25, 1095-1102
   Abstract »    Full Text »    PDF »
Stargazin is an AMPA receptor auxiliary subunit.
W. Vandenberghe, R. A. Nicoll, and D. S. Bredt (2005)
PNAS 102, 485-490
   Abstract »    Full Text »    PDF »
The Molecular Physiology of Tight Junction Pores.
C. M. Van Itallie and J. M. Anderson (2004)
Physiology 19, 331-338
   Abstract »    Full Text »    PDF »
AMPA Receptor Synaptic Targeting Regulated by Stargazin Interactions with the Golgi-Resident PDZ Protein nPIST.
A. E. Cuadra, S.-H. Kuo, Y. Kawasaki, D. S. Bredt, and D. M. Chetkovich (2004)
J. Neurosci. 24, 7491-7502
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882