Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 303 (5664): 1640-1644

Copyright © 2004 by the American Association for the Advancement of Science

The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization

Liuling Yan,1* Artem Loukoianov,1 Ann Blechl,2 Gabriela Tranquilli,1{dagger} Wusirika Ramakrishna,3 Phillip SanMiguel,4 Jeffrey L. Bennetzen,5 Viviana Echenique,1{ddagger} Jorge Dubcovsky1*§

Abstract: Plants with a winter growth habit flower earlier when exposed for several weeks to cold temperatures, a process called vernalization. We report here the positional cloning of the wheat vernalization gene VRN2, a dominant repressor of flowering that is down-regulated by vernalization. Loss of function of VRN2, whether by natural mutations or deletions, resulted in spring lines, which do not require vernalization to flower. Reduction of the RNA level of VRN2 by RNA interference accelerated the flowering time of transgenic winter-wheat plants by more than a month.

1 Department of Agronomy and Range Science, University of California, Davis, CA 95616, USA.
2 U.S. Department of Agriculture–Agricultural Research Service, Albany, CA 94710, USA.
3 Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
4 Purdue University Genomics Core, Purdue University, West Lafayette, IN 47907, USA.
5 Department of Genetics, University of Georgia, Athens, GA 30602, USA.

Back to Top

* These authors contributed equally to this work.

{dagger} Present address: Instituto Recursos Biológicos, Instituto Nacional de Tecnologia Agropecuaria, (1712) Castelar, Buenos Aires, Argentina.

{ddagger} Present address: Consejo Nacional Investigaciones Cientificas y Tecnicas Departamento de Agronomía, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina.

§ To whom correspondence should be addressed. E-mail: jdubcovsky{at}

Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Interaction of Photoperiod and Vernalization Determines Flowering Time of Brachypodium distachyon.
T. S. Ream, D. P. Woods, C. J. Schwartz, C. P. Sanabria, J. A. Mahoy, E. M. Walters, H. F. Kaeppler, and R. M. Amasino (2014)
Plant Physiology 164, 694-709
   Abstract »    Full Text »    PDF »
Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1.
S. Pearce, L. S. Vanzetti, and J. Dubcovsky (2013)
Plant Physiology 163, 1433-1445
   Abstract »    Full Text »    PDF »
Phytochrome C Is A Key Factor Controlling Long-Day Flowering in Barley.
H. Nishida, D. Ishihara, M. Ishii, T. Kaneko, H. Kawahigashi, Y. Akashi, D. Saisho, K. Tanaka, H. Handa, K. Takeda, et al. (2013)
Plant Physiology 163, 804-814
   Abstract »    Full Text »    PDF »
Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments.
B. Zheng, B. Biddulph, D. Li, H. Kuchel, and S. Chapman (2013)
J. Exp. Bot. 64, 3747-3761
   Abstract »    Full Text »    PDF »
Sequence-Based Mapping of the Polyploid Wheat Genome.
C. Saintenac, D. Jiang, S. Wang, and E. Akhunov (2013)
g3 3, 1105-1114
   Abstract »    Full Text »    PDF »
Early Disruption of Maternal-Zygotic Interaction and Activation of Defense-Like Responses in Arabidopsis Interspecific Crosses.
D. Burkart-Waco, K. Ngo, B. Dilkes, C. Josefsson, and L. Comai (2013)
PLANT CELL 25, 2037-2055
   Abstract »    Full Text »    PDF »
Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars.
C. R. Cavanagh, S. Chao, S. Wang, B. E. Huang, S. Stephen, S. Kiani, K. Forrest, C. Saintenac, G. L. Brown-Guedira, A. Akhunova, et al. (2013)
PNAS 110, 8057-8062
   Abstract »    Full Text »    PDF »
The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice.
H. Itoh and T. Izawa (2013)
Mol Plant 6, 635-649
   Abstract »    Full Text »    PDF »
Low temperatures induce rapid changes in chromatin state and transcript levels of the cereal VERNALIZATION1 gene.
S. N. Oliver, W. Deng, M. C. Casao, and B. Trevaskis (2013)
J. Exp. Bot. 64, 2413-2422
   Abstract »    Full Text »    PDF »
Fine-Mapping and Identification of a Candidate Gene Underlying the d2 Dwarfing Phenotype in Pearl Millet, Cenchrus americanus (L.) Morrone.
R. K. Parvathaneni, V. Jakkula, F. K. Padi, S. Faure, N. Nagarajappa, A. C. Pontaroli, X. Wu, J. L. Bennetzen, and K. M. Devos (2013)
g3 3, 563-572
   Abstract »    Full Text »    PDF »
Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia.
W. Wu, X.-M. Zheng, G. Lu, Z. Zhong, H. Gao, L. Chen, C. Wu, H.-J. Wang, Q. Wang, K. Zhou, et al. (2013)
PNAS 110, 2775-2780
   Abstract »    Full Text »    PDF »
Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae).
M. Mauro-Herrera, X. Wang, H. Barbier, T. P. Brutnell, K. M. Devos, and A. N. Doust (2013)
g3 3, 283-295
   Abstract »    Full Text »    PDF »
A conserved molecular basis for photoperiod adaptation in two temperate legumes.
J. L. Weller, L. C. Liew, V. F. G. Hecht, V. Rajandran, R. E. Laurie, S. Ridge, B. Wenden, J. K. Vander Schoor, O. Jaminon, C. Blassiau, et al. (2012)
PNAS 109, 21158-21163
   Abstract »    Full Text »    PDF »
The Promiscuous Life of Plant NUCLEAR FACTOR Y Transcription Factors.
K. Petroni, R. W. Kumimoto, N. Gnesutta, V. Calvenzani, M. Fornari, C. Tonelli, B. F. Holt III, and R. Mantovani (2012)
PLANT CELL 24, 4777-4792
   Abstract »    Full Text »    PDF »
Control of barley (Hordeum vulgare L.) development and senescence by the interaction between a chromosome six grain protein content locus, day length, and vernalization.
D. L. Parrott, E. P. Downs, and A. M. Fischer (2012)
J. Exp. Bot. 63, 1329-1339
   Abstract »    Full Text »    PDF »
The Molecular Basis of Vernalization in Different Plant Groups.
T. S. Ream, D. P. Woods, and R. M. Amasino (2012)
Cold Spring Harb Symp Quant Biol 77, 105-115
   Abstract »    Full Text »    PDF »
Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation.
G. Borras-Gelonch, G. J. Rebetzke, R. A. Richards, and I. Romagosa (2012)
J. Exp. Bot. 63, 69-89
   Abstract »    Full Text »    PDF »
The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.
R. Kikuchi, H. Kawahigashi, M. Oshima, T. Ando, and H. Handa (2012)
J. Exp. Bot. 63, 773-784
   Abstract »    Full Text »    PDF »
The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature.
V. Allard, O. Veisz, B. Koszegi, M. Rousset, J. Le Gouis, and P. Martre (2012)
J. Exp. Bot. 63, 847-857
   Abstract »    Full Text »    PDF »
A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.).
C.- G. Chu, C. T. Tan, G.- T. Yu, S. Zhong, S. S. Xu, L. Yan, and B. S. Gill (2011)
g3 1, 637-645
   Abstract »    Full Text »    PDF »
Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum.
R. L. Murphy, R. R. Klein, D. T. Morishige, J. A. Brady, W. L. Rooney, F. R. Miller, D. V. Dugas, P. E. Klein, and J. E. Mullet (2011)
PNAS 108, 16469-16474
   Abstract »    Full Text »    PDF »
High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay.
I. Schmalenbach, T. J. March, T. Bringezu, R. Waugh, K. Pillen, and B. S. Gill (2011)
g3 1, 187-196
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness.
S. Gasparis, W. Orczyk, W. Zalewski, and A. Nadolska-Orczyk (2011)
J. Exp. Bot. 62, 4025-4036
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses.
P. Li and T. P. Brutnell (2011)
J. Exp. Bot. 62, 3031-3037
   Abstract »    Full Text »    PDF »
Natural Variation of Barley Vernalization Requirements: Implication of Quantitative Variation of Winter Growth Habit as an Adaptive Trait in East Asia.
D. Saisho, M. Ishii, K. Hori, and K. Sato (2011)
Plant Cell Physiol. 52, 775-784
   Abstract »    Full Text »    PDF »
Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days.
M. C. Casao, E. Igartua, I. Karsai, J. M. Lasa, M. P. Gracia, and A. M. Casas (2011)
J. Exp. Bot. 62, 1939-1949
   Abstract »    Full Text »    PDF »
The FRIGIDA Complex Activates Transcription of FLC, a Strong Flowering Repressor in Arabidopsis, by Recruiting Chromatin Modification Factors.
K. Choi, J. Kim, H.-J. Hwang, S. Kim, C. Park, S. Y. Kim, and I. Lee (2011)
PLANT CELL 23, 289-303
   Abstract »    Full Text »    PDF »
An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet.
P. A. Pin, R. Benlloch, D. Bonnet, E. Wremerth-Weich, T. Kraft, J. J. L. Gielen, and O. Nilsson (2010)
Science 330, 1397-1400
   Abstract »    Full Text »    PDF »
Speciation genes in plants.
L. H. Rieseberg and B. K. Blackman (2010)
Ann. Bot. 106, 439-455
   Abstract »    Full Text »    PDF »
ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals.
A. G. Greenup, S. Sasani, S. N. Oliver, M. J. Talbot, E. S. Dennis, M. N. Hemming, and B. Trevaskis (2010)
Plant Physiology 153, 1062-1073
   Abstract »    Full Text »    PDF »
The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1.
B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, et al. (2010)
Plant Physiology 153, 198-210
   Abstract »    Full Text »    PDF »
Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity.
W. Zalewski, P. Galuszka, S. Gasparis, W. Orczyk, and A. Nadolska-Orczyk (2010)
J. Exp. Bot. 61, 1839-1851
   Abstract »    Full Text »    PDF »
RNAi for functional genomics in plants.
K. M. McGinnis (2010)
Briefings in Functional Genomics 9, 111-117
   Abstract »    Full Text »    PDF »
Integrating the processes in the evolutionary system of domestication.
R. Allaby (2010)
J. Exp. Bot. 61, 935-944
   Abstract »    Full Text »    PDF »
Genetic Control of Photoperiod Sensitivity in Maize Revealed by Joint Multiple Population Analysis.
N. D. Coles, M. D. McMullen, P. J. Balint-Kurti, R. C. Pratt, and J. B. Holland (2010)
Genetics 184, 799-812
   Abstract »    Full Text »    PDF »
Cis-regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana.
C. Schwartz, S. Balasubramanian, N. Warthmann, T. P. Michael, J. Lempe, S. Sureshkumar, Y. Kobayashi, J. N. Maloof, J. O. Borevitz, J. Chory, et al. (2009)
Genetics 183, 723-732
   Abstract »    Full Text »    PDF »
Gene Content and Virtual Gene Order of Barley Chromosome 1H.
K. F.X. Mayer, S. Taudien, M. Martis, H. Simkova, P. Suchankova, H. Gundlach, T. Wicker, A. Petzold, M. Felder, B. Steuernagel, et al. (2009)
Plant Physiology 151, 496-505
   Abstract »    Full Text »    PDF »
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
M. C. Luo, K. R. Deal, E. D. Akhunov, A. R. Akhunova, O. D. Anderson, J. A. Anderson, N. Blake, M. T. Clegg, D. Coleman-Derr, E. J. Conley, et al. (2009)
PNAS 106, 15780-15785
   Abstract »    Full Text »    PDF »
Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.).
M. Baga, D. B. Fowler, and R. N. Chibbar (2009)
J. Exp. Bot. 60, 3575-3585
   Abstract »    Full Text »    PDF »
Molecular Evolution of VEF-Domain-Containing PcG Genes in Plants.
L.-J. Chen, Z.-Y. Diao, C. Specht, and Z. R. Sung (2009)
Mol Plant 2, 738-754
   Abstract »    Full Text »    PDF »
What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?.
C. Alonso-Blanco, M. G.M. Aarts, L. Bentsink, J. J.B. Keurentjes, M. Reymond, D. Vreugdenhil, and M. Koornneef (2009)
PLANT CELL 21, 1877-1896
   Abstract »    Full Text »    PDF »
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
A. Greenup, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2009)
Ann. Bot. 103, 1165-1172
   Abstract »    Full Text »    PDF »
Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene.
S. N. Oliver, E. J. Finnegan, E. S. Dennis, W. J. Peacock, and B. Trevaskis (2009)
PNAS 106, 8386-8391
   Abstract »    Full Text »    PDF »
The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare)..
S. Sasani, M. N. Hemming, S. N. Oliver, A. Greenup, R. Tavakkol-Afshari, S. Mahfoozi, K. Poustini, H.-R. Sharifi, E. S. Dennis, W. J. Peacock, et al. (2009)
J. Exp. Bot. 60, 2169-2178
   Abstract »    Full Text »    PDF »
The CArG-Box Located Upstream from the Transcriptional Start of Wheat Vernalization Gene VRN1 Is Not Necessary for the Vernalization Response.
B. Pidal, L. Yan, D. Fu, F. Zhang, G. Tranquilli, and J. Dubcovsky (2009)
J. Hered. 100, 355-364
   Abstract »    Full Text »    PDF »
Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources.
K. Sato, T. Shin-I, M. Seki, K. Shinozaki, H. Yoshida, K. Takeda, Y. Yamazaki, M. Conte, and Y. Kohara (2009)
DNA Res 16, 81-89
   Abstract »    Full Text »    PDF »
Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat.
A. Distelfeld, G. Tranquilli, C. Li, L. Yan, and J. Dubcovsky (2009)
Plant Physiology 149, 245-257
   Abstract »    Full Text »    PDF »
Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication.
Y. Yu, T. Tang, Q. Qian, Y. Wang, M. Yan, D. Zeng, B. Han, C.-I Wu, S. Shi, and J. Li (2008)
PLANT CELL 20, 2946-2959
   Abstract »    Full Text »    PDF »
The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat.
S. Lewis, M. E. Faricelli, M. L. Appendino, M. Valarik, and J. Dubcovsky (2008)
J. Exp. Bot. 59, 3595-3607
   Abstract »    Full Text »    PDF »
Regulation of floral initiation in horticultural trees.
J. D. Wilkie, M. Sedgley, and T. Olesen (2008)
J. Exp. Bot. 59, 3215-3228
   Abstract »    Full Text »    PDF »
Involvement of the MADS-Box Gene ZMM4 in Floral Induction and Inflorescence Development in Maize.
O. N. Danilevskaya, X. Meng, D. A. Selinger, S. Deschamps, P. Hermon, G. Vansant, R. Gupta, E. V. Ananiev, and M. G. Muszynski (2008)
Plant Physiology 147, 2054-2069
   Abstract »    Full Text »    PDF »
Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach.
I. Karsai, P. Szucs, B. Koszegi, P.M. Hayes, A. Casas, Z. Bedo, and O. Veisz (2008)
J. Exp. Bot. 59, 2707-2715
   Abstract »    Full Text »    PDF »
Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement.
S. P. Moose and R. H. Mumm (2008)
Plant Physiology 147, 969-977
   Full Text »    PDF »
Low-Temperature and Daylength Cues Are Integrated to Regulate FLOWERING LOCUS T in Barley.
M. N. Hemming, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2008)
Plant Physiology 147, 355-366
   Abstract »    Full Text »    PDF »
FLC or not FLC: the other side of vernalization.
C. M. Alexandre and L. Hennig (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Natural Variation in Arabidopsis lyrata Vernalization Requirement Conferred by a FRIGIDA Indel Polymorphism.
H. Kuittinen, A. Niittyvuopio, P. Rinne, and O. Savolainen (2008)
Mol. Biol. Evol. 25, 319-329
   Abstract »    Full Text »    PDF »
Discrete Developmental Roles for Temperate Cereal Grass VERNALIZATION1/FRUITFULL-Like Genes in Flowering Competency and the Transition to Flowering.
J. C. Preston and E. A. Kellogg (2008)
Plant Physiology 146, 265-276
   Abstract »    Full Text »    PDF »
The molecular analysis of the shade avoidance syndrome in the grasses has begun.
T. H. Kebrom and T. P. Brutnell (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
The Importance of Barley Genetics and Domestication in a Global Perspective.
M. Pourkheirandish and T. Komatsuda (2007)
Ann. Bot. 100, 999-1008
   Abstract »    Full Text »    PDF »
Overexpression of TaVRN1 in Arabidopsis Promotes Early Flowering and Alters Development.
H. Adam, F. Ouellet, N. A. Kane, Z. Agharbaoui, G. Major, Y. Tominaga, and F. Sarhan (2007)
Plant Cell Physiol. 48, 1192-1206
   Abstract »    Full Text »    PDF »
Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication.
J. Dubcovsky and J. Dvorak (2007)
Science 316, 1862-1866
   Abstract »    Full Text »    PDF »
Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris).
P. A. Reeves, Y. He, R. J. Schmitz, R. M. Amasino, L. W. Panella, and C. M. Richards (2007)
Genetics 176, 295-307
   Abstract »    Full Text »    PDF »
Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
J. Cockram, H. Jones, F. J. Leigh, D. O'Sullivan, W. Powell, D. A. Laurie, and A. J. Greenland (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley.
B. Trevaskis, M. Tadege, M. N. Hemming, W. J. Peacock, E. S. Dennis, and C. Sheldon (2007)
Plant Physiology 143, 225-235
   Abstract »    Full Text »    PDF »
The wheat and barley vernalization gene VRN3 is an orthologue of FT.
L. Yan, D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky (2006)
PNAS 103, 19581-19586
   Abstract »    Full Text »    PDF »
delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize.
M. G. Muszynski, T. Dam, B. Li, D. M. Shirbroun, Z. Hou, E. Bruggemann, R. Archibald, E. V. Ananiev, and O. N. Danilevskaya (2006)
Plant Physiology 142, 1523-1536
   Abstract »    Full Text »    PDF »
CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis.
S. Wenkel, F. Turck, K. Singer, L. Gissot, J. Le Gourrierec, A. Samach, and G. Coupland (2006)
PLANT CELL 18, 2971-2984
   Abstract »    Full Text »    PDF »
RNA Interference-Based Gene Silencing as an Efficient Tool for Functional Genomics in Hexaploid Bread Wheat.
S. Travella, T. E. Klimm, and B. Keller (2006)
Plant Physiology 142, 6-20
   Abstract »    Full Text »    PDF »
High-Resolution Radiation Hybrid Map of Wheat Chromosome 1D.
V. Kalavacharla, K. Hossain, Y. Gu, O. Riera-Lizarazu, M. I. Vales, S. Bhamidimarri, J. L. Gonzalez-Hernandez, S. S. Maan, and S. F. Kianian (2006)
Genetics 173, 1089-1099
   Abstract »    Full Text »    PDF »
The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis..
I. Searle, Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R. A. Amasino, and G. Coupland (2006)
Genes & Dev. 20, 898-912
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882