Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 303 (5666): 2022-2025

Copyright © 2004 by the American Association for the Advancement of Science

A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development

Xuemei Chen

Abstract: Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, Ishow that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.

Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.

E-mail: xuemei{at}

Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control.
Y. Jiao and E. M. Meyerowitz (2014)
Mol Syst Biol 6, 419
   Abstract »    Full Text »    PDF »
UV-B responsive microRNA genes in Arabidopsis thaliana.
X. Zhou, G. Wang, and W. Zhang (2014)
Mol Syst Biol 3, 103
   Abstract »    Full Text »    PDF »
Traffic into silence: endomembranes and post-transcriptional RNA silencing.
Y. J. Kim, A. Maizel, and X. Chen (2014)
   Abstract »    Full Text »    PDF »
The role of microRNAs in the control of flowering time.
E. Spanudakis and S. Jackson (2014)
J. Exp. Bot. 65, 365-380
   Abstract »    Full Text »    PDF »
Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay.
Q. Liu, F. Wang, and M. J. Axtell (2014)
PLANT CELL 26, 741-753
   Abstract »    Full Text »    PDF »
Cloning and Characterization of miRNAs and Their Targets, Including a Novel miRNA-Targeted NBS-LRR Protein Class Gene in Apple (Golden Delicious).
C. Ma, Y. Lu, S. Bai, W. Zhang, X. Duan, D. Meng, Z. Wang, A. Wang, Z. Zhou, and T. Li (2014)
Mol Plant 7, 218-230
   Abstract »    Full Text »    PDF »
Virus-Based MicroRNA Silencing in Plants.
A. Sha, J. Zhao, K. Yin, Y. Tang, Y. Wang, X. Wei, Y. Hong, and Y. Liu (2014)
Plant Physiology 164, 36-47
   Abstract »    Full Text »    PDF »
Molecular Mechanism of microRNA396 Mediating Pistil Development in Arabidopsis.
G. Liang, H. He, Y. Li, F. Wang, and D. Yu (2014)
Plant Physiology 164, 249-258
   Abstract »    Full Text »    PDF »
Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
S. M. Bemis, J. S. Lee, E. D. Shpak, and K. U. Torii (2013)
J. Exp. Bot. 64, 5323-5333
   Abstract »    Full Text »    PDF »
Role of microRNA-136-3p on the Expression of Luteinizing Hormone-Human Chorionic Gonadotropin Receptor mRNA in Rat Ovaries.
Y. Kitahara, K. Nakamura, K. Kogure, and T. Minegishi (2013)
Biol Reprod 89, 114
   Abstract »    Full Text »    PDF »
ProteoMirExpress: Inferring MicroRNA and Protein-centered Regulatory Networks from High-throughput Proteomic and mRNA Expression Data.
J. Qin, M. J. Li, P. Wang, N. S. Wong, M. P. Wong, Z. Xia, G. S. W. Tsao, M. Q. Zhang, and J. Wang (2013)
Mol. Cell. Proteomics 12, 3379-3387
   Abstract »    Full Text »    PDF »
Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence.
K. Houston, S. M. McKim, J. Comadran, N. Bonar, I. Druka, N. Uzrek, E. Cirillo, J. Guzy-Wrobelska, N. C. Collins, C. Halpin, et al. (2013)
PNAS 110, 16675-16680
   Abstract »    Full Text »    PDF »
Translational Landscape of Photomorphogenic Arabidopsis.
M.-J. Liu, S.-H. Wu, J.-F. Wu, W.-D. Lin, Y.-C. Wu, T.-Y. Tsai, H.-L. Tsai, and S.-H. Wu (2013)
PLANT CELL 25, 3699-3710
   Abstract »    Full Text »    PDF »
Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs.
K. Rogers and X. Chen (2013)
PLANT CELL 25, 2383-2399
   Abstract »    Full Text »    PDF »
Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of Arabis alpina.
S. Bergonzi, M. C. Albani, E. V. Loren van Themaat, K. J. V. Nordstrom, R. Wang, K. Schneeberger, P. D. Moerland, and G. Coupland (2013)
Science 340, 1094-1097
   Abstract »    Full Text »    PDF »
Molecular Basis of Age-Dependent Vernalization in Cardamine flexuosa.
C.-M. Zhou, T.-Q. Zhang, X. Wang, S. Yu, H. Lian, H. Tang, Z.-Y. Feng, J. Zozomova-Lihova, and J.-W. Wang (2013)
Science 340, 1097-1100
   Abstract »    Full Text »    PDF »
A reversed framework for the identification of microRNA-target pairs in plants.
C. Shao, M. Chen, and Y. Meng (2013)
Brief Bioinform 14, 293-301
   Abstract »    Full Text »    PDF »
Comprehensive Protein-Based Artificial MicroRNA Screens for Effective Gene Silencing in Plants.
J.-F. Li, H. S. Chung, Y. Niu, J. Bush, M. McCormack, and J. Sheen (2013)
PLANT CELL 25, 1507-1522
   Abstract »    Full Text »    PDF »
Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis.
R. Karlova, J. C. van Haarst, C. Maliepaard, H. van de Geest, A. G. Bovy, M. Lammers, G. C. Angenent, and R. A. de Maagd (2013)
J. Exp. Bot. 64, 1863-1878
   Abstract »    Full Text »    PDF »
Small Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in Chlamydomonas reinhardtii.
X. Ma, E.-J. Kim, I. Kook, F. Ma, A. Voshall, E. Moriyama, and H. Cerutti (2013)
PLANT CELL 25, 985-998
   Abstract »    Full Text »    PDF »
STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis.
S. Ben Chaabane, R. Liu, V. Chinnusamy, Y. Kwon, J.-h. Park, S. Y. Kim, J.-K. Zhu, S. W. Yang, and B.-h. Lee (2013)
Nucleic Acids Res. 41, 1984-1997
   Abstract »    Full Text »    PDF »
Tissue-Specific Silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a.
P. A. Manavella, D. Koenig, I. Rubio-Somoza, H. A. Burbano, C. Becker, and D. Weigel (2013)
Plant Physiology 161, 805-812
   Abstract »    Full Text »    PDF »
A Molecular Link between miRISCs and Deadenylases Provides New Insight into the Mechanism of Gene Silencing by MicroRNAs.
J. E. Braun, E. Huntzinger, and E. Izaurralde (2012)
Cold Spring Harb Perspect Biol 4, a012328
   Abstract »    Full Text »    PDF »
miR156 and miR390 Regulate tasiRNA Accumulation and Developmental Timing in Physcomitrella patens.
S. H. Cho, C. Coruh, and M. J. Axtell (2012)
PLANT CELL 24, 4837-4849
   Abstract »    Full Text »    PDF »
The ABC model of flower development: then and now.
J. L. Bowman, D. R. Smyth, and E. M. Meyerowitz (2012)
Development 139, 4095-4098
   Abstract »    Full Text »    PDF »
APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
N. T. Krogan, K. Hogan, and J. A. Long (2012)
Development 139, 4180-4190
   Abstract »    Full Text »    PDF »
Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism.
S. Sukrong, K.-Y. Yun, P. Stadler, C. Kumar, T. Facciuolo, B. A. Moffatt, and D. L. Falcone (2012)
Mol Plant 5, 1310-1332
   Abstract »    Full Text »    PDF »
Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.
V. C. Galvao, D. Horrer, F. Kuttner, and M. Schmid (2012)
Development 139, 4072-4082
   Abstract »    Full Text »    PDF »
MADS-box Genes and Floral Development: the Dark Side.
K. Heijmans, P. Morel, and M. Vandenbussche (2012)
J. Exp. Bot. 63, 5397-5404
   Abstract »    Full Text »    PDF »
Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants.
A. Carbonell, N. Fahlgren, H. Garcia-Ruiz, K. B. Gilbert, T. A. Montgomery, T. Nguyen, J. T. Cuperus, and J. C. Carrington (2012)
PLANT CELL 24, 3613-3629
   Abstract »    Full Text »    PDF »
IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress.
N. Kinoshita, H. Wang, H. Kasahara, J. Liu, C. MacPherson, Y. Machida, Y. Kamiya, M. A. Hannah, and N.-H. Chua (2012)
PLANT CELL 24, 3590-3602
   Abstract »    Full Text »    PDF »
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription Factors.
S. Yu, V. C. Galvao, Y.-C. Zhang, D. Horrer, T.-Q. Zhang, Y.-H. Hao, Y.-Q. Feng, S. Wang, M. Schmid, and J.-W. Wang (2012)
PLANT CELL 24, 3320-3332
   Abstract »    Full Text »    PDF »
A Comparative miRNAome Analysis Reveals Seven Fiber Initiation-Related and 36 Novel miRNAs in Developing Cotton Ovules.
Z.-M. Wang, W. Xue, C.-J. Dong, L.-G. Jin, S.-M. Bian, C. Wang, X.-Y. Wu, and J.-Y. Liu (2012)
Mol Plant 5, 889-900
   Abstract »    Full Text »    PDF »
Pod Corn Is Caused by Rearrangement at the Tunicate1 Locus.
J.-J. Han, D. Jackson, and R. Martienssen (2012)
PLANT CELL 24, 2733-2744
   Abstract »    Full Text »    PDF »
The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element.
T. T. Dinh, T. Girke, X. Liu, L. Yant, M. Schmid, and X. Chen (2012)
Development 139, 1978-1986
   Abstract »    Full Text »    PDF »
Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing.
Z. Tang, L. Zhang, C. Xu, S. Yuan, F. Zhang, Y. Zheng, and C. Zhao (2012)
Plant Physiology 159, 721-738
   Abstract »    Full Text »    PDF »
Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering.
J.-H. Jung, P. J. Seo, J. H. Ahn, and C.-M. Park (2012)
J. Biol. Chem. 287, 16007-16016
   Abstract »    Full Text »    PDF »
The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 Module Regulates Ambient Temperature-Responsive Flowering via FLOWERING LOCUS T in Arabidopsis.
J. J. Kim, J. H. Lee, W. Kim, H. S. Jung, P. Huijser, and J. H. Ahn (2012)
Plant Physiology 159, 461-478
   Abstract »    Full Text »    PDF »
Computational Identification of MicroRNAs in Strawberry Expressed Sequence Tags and Validation of Their Precise Sequences by miR-RACE.
Q.-H. Dong, J. Han, H.-P. Yu, C. Wang, M.-Z. Zhao, H. Liu, A.-J. Ge, and J.-G. Fang (2012)
J. Hered. 103, 268-277
   Abstract »    Full Text »    PDF »
Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor SHATTERING ABORTION1.
Y. Zhou, D. Lu, C. Li, J. Luo, B.-F. Zhu, J. Zhu, Y. Shangguan, Z. Wang, T. Sang, B. Zhou, et al. (2012)
PLANT CELL 24, 1034-1048
   Abstract »    Full Text »    PDF »
Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis.
L. Yang, G. Wu, and R. S. Poethig (2012)
PNAS 109, 315-320
   Abstract »    Full Text »    PDF »
Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa.
X. Yu, H. Wang, Y. Lu, M. de Ruiter, M. Cariaso, M. Prins, A. van Tunen, and Y. He (2012)
J. Exp. Bot. 63, 1025-1038
   Abstract »    Full Text »    PDF »
A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development.
J. J. Ripoll, A. H. K. Roeder, G. S. Ditta, and M. F. Yanofsky (2011)
Development 138, 5167-5176
   Abstract »    Full Text »    PDF »
The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective.
Y. Meng, C. Shao, H. Wang, and M. Chen (2011)
Plant Physiology 157, 1583-1595
   Full Text »    PDF »
The control of developmental phase transitions in plants.
P. Huijser and M. Schmid (2011)
Development 138, 4117-4129
   Abstract »    Full Text »    PDF »
Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing.
V. M. Butardo, M. A. Fitzgerald, A. R. Bird, M. J. Gidley, B. M. Flanagan, O. Larroque, A. P. Resurreccion, H. K. C. Laidlaw, S. A. Jobling, M. K. Morell, et al. (2011)
J. Exp. Bot. 62, 4927-4941
   Abstract »    Full Text »    PDF »
Correlation between number and position of floral organs in Arabidopsis.
A. A. Penin and M. D. Logacheva (2011)
Ann. Bot. 108, 123-131
   Abstract »    Full Text »    PDF »
The role of epigenetic processes in controlling flowering time in plants exposed to stress.
M. W. Yaish, J. Colasanti, and S. J. Rothstein (2011)
J. Exp. Bot. 62, 3727-3735
   Abstract »    Full Text »    PDF »
LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers.
B. Grigorova, C. Mara, C. Hollender, P. Sijacic, X. Chen, and Z. Liu (2011)
Development 138, 2451-2456
   Abstract »    Full Text »    PDF »
SplamiR--prediction of spliced miRNAs in plants.
C. J. Thieme, L. Gramzow, D. Lobbes, and G. Theissen (2011)
Bioinformatics 27, 1215-1223
   Abstract »    Full Text »    PDF »
MicroRNA activity in the Arabidopsis male germline.
F. Borges, P. A. Pereira, R. K. Slotkin, R. A. Martienssen, and J. D. Becker (2011)
J. Exp. Bot. 62, 1611-1620
   Abstract »    Full Text »    PDF »
Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening.
R. Karlova, F. M. Rosin, J. Busscher-Lange, V. Parapunova, P. T. Do, A. R. Fernie, P. D. Fraser, C. Baxter, G. C. Angenent, and R. A. de Maagd (2011)
PLANT CELL 23, 923-941
   Abstract »    Full Text »    PDF »
Regulation of flowering time and floral patterning by miR172.
Q.-H. Zhu and C. A. Helliwell (2011)
J. Exp. Bot. 62, 487-495
   Abstract »    Full Text »    PDF »
Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation.
C. Nibau, V. S. Di Stilio, H.-m. Wu, and A. Y. Cheung (2011)
J. Exp. Bot. 62, 949-961
   Abstract »    Full Text »    PDF »
On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development.
H. Wollmann, E. Mica, M. Todesco, J. A. Long, and D. Weigel (2010)
Development 137, 3633-3642
   Abstract »    Full Text »    PDF »
MicroRNA Gene Regulation Cascades During Early Stages of Plant Development.
H. Nonogaki (2010)
Plant Cell Physiol. 51, 1840-1846
   Abstract »    Full Text »    PDF »
WAVY LEAF1, an Ortholog of Arabidopsis HEN1, Regulates Shoot Development by Maintaining MicroRNA and Trans-Acting Small Interfering RNA Accumulation in Rice.
M. Abe, T. Yoshikawa, M. Nosaka, H. Sakakibara, Y. Sato, Y. Nagato, and J.-i. Itoh (2010)
Plant Physiology 154, 1335-1346
   Abstract »    Full Text »    PDF »
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation.
E. Varallyay, A. Valoczi, A. Agyi, J. Burgyan, and Z. Havelda (2010)
EMBO J. 29, 3507-3519
   Abstract »    Full Text »    PDF »
Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome.
S. Laubinger, G. Zeller, S. R. Henz, S. Buechel, T. Sachsenberg, J.-W. Wang, G. Ratsch, and D. Weigel (2010)
PNAS 107, 17466-17473
   Abstract »    Full Text »    PDF »
Proinflammatory Role for let-7 MicroRNAS in Experimental Asthma.
S. Polikepahad, J. M. Knight, A. O. Naghavi, T. Oplt, C. J. Creighton, C. Shaw, A. L. Benham, J. Kim, B. Soibam, R. A. Harris, et al. (2010)
J. Biol. Chem. 285, 30139-30149
   Abstract »    Full Text »    PDF »
In Vitro and In Vivo Characterization of MicroRNA-Targeted Alphavirus Replicon and Helper RNAs.
K. I. Kamrud, V. M. Coffield, G. Owens, C. Goodman, K. Alterson, M. Custer, M. A. Murphy, W. Lewis, S. Timberlake, E. K. Wansley, et al. (2010)
J. Virol. 84, 7713-7725
   Abstract »    Full Text »    PDF »
Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor APETALA2.
L. Yant, J. Mathieu, T. T. Dinh, F. Ott, C. Lanz, H. Wollmann, X. Chen, and M. Schmid (2010)
PLANT CELL 22, 2156-2170
   Abstract »    Full Text »    PDF »
Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis.
H. Lee, S. J. Yoo, J. H. Lee, W. Kim, S. K. Yoo, H. Fitzgerald, J. C. Carrington, and J. H. Ahn (2010)
Nucleic Acids Res. 38, 3081-3093
   Abstract »    Full Text »    PDF »
Methodological framework for functional characterization of plant microRNAs.
M. Chen, Y. Meng, C. Mao, D. Chen, and P. Wu (2010)
J. Exp. Bot. 61, 2271-2280
   Abstract »    Full Text »    PDF »
microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress.
R. C. Martin, P.-P. Liu, N. A. Goloviznina, and H. Nonogaki (2010)
J. Exp. Bot. 61, 2229-2234
   Abstract »    Full Text »    PDF »
Co-ordination of developmental processes by small RNAs during leaf development.
A. Pulido and P. Laufs (2010)
J. Exp. Bot. 61, 1277-1291
   Abstract »    Full Text »    PDF »
Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage.
S. K. Nair, N. Wang, Y. Turuspekov, M. Pourkheirandish, S. Sinsuwongwat, G. Chen, M. Sameri, A. Tagiri, I. Honda, Y. Watanabe, et al. (2010)
PNAS 107, 490-495
   Abstract »    Full Text »    PDF »
Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants.
C. Zeng, W. Wang, Y. Zheng, X. Chen, W. Bo, S. Song, W. Zhang, and M. Peng (2010)
Nucleic Acids Res. 38, 981-995
   Abstract »    Full Text »    PDF »
Control of cell proliferation in Arabidopsis thaliana by microRNA miR396.
R. E. Rodriguez, M. A. Mecchia, J. M. Debernardi, C. Schommer, D. Weigel, and J. F. Palatnik (2010)
Development 137, 103-112
   Abstract »    Full Text »    PDF »
A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159.
N. G. Bologna, J. L. Mateos, E. G. Bresso, and J. F. Palatnik (2009)
EMBO J. 28, 3646-3656
   Abstract »    Full Text »    PDF »
Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome.
C. Addo-Quaye, J. A. Snyder, Y. B. Park, Y.-F. Li, R. Sunkar, and M. J. Axtell (2009)
RNA 15, 2112-2121
   Abstract »    Full Text »    PDF »
Deciphering the diversity of small RNAs in plants: the long and short of it.
F. Schwach, S. Moxon, V. Moulton, and T. Dalmay (2009)
Briefings in Functional Genomics 8, 472-481
   Abstract »    Full Text »    PDF »
Rice MicroRNA Effector Complexes and Targets.
L. Wu, Q. Zhang, H. Zhou, F. Ni, X. Wu, and Y. Qi (2009)
PLANT CELL 21, 3421-3435
   Abstract »    Full Text »    PDF »
The SPOROCYTELESS/NOZZLE Gene Is Involved in Controlling Stamen Identity in Arabidopsis.
X. Liu, J. Huang, S. Parameswaran, T. Ito, B. Seubert, M. Auer, A. Rymaszewski, G. Jia, H. A. Owen, and D. Zhao (2009)
Plant Physiology 151, 1401-1411
   Abstract »    Full Text »    PDF »
Graft-transmissible induction of potato tuberization by the microRNA miR172.
A. Martin, H. Adam, M. Diaz-Mendoza, M. Zurczak, N. D. Gonzalez-Schain, and P. Suarez-Lopez (2009)
Development 136, 2873-2881
   Abstract »    Full Text »    PDF »
Transcriptome Analyses Revealed Diverse Expression Changes in ago1 and hyl1 Arabidopsis Mutants.
Y. Kurihara, E. Kaminuma, A. Matsui, M. Kawashima, M. Tanaka, T. Morosawa, J. Ishida, Y. Mochizuki, K. Shinozaki, T. Toyoda, et al. (2009)
Plant Cell Physiol. 50, 1715-1720
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882