Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 304 (5668): 289-292

Copyright © 2004 by the American Association for the Advancement of Science

Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis

Xue Han, Chih-Tien Wang, Jihong Bai, Edwin R. Chapman, Meyer B. Jackson*

Abstract: The fusion pore of regulated exocytosis is a channel that connects and spans the vesicle and plasma membranes. The molecular composition of this important intermediate structure of exocytosis is unknown. Here, we found that mutations of some residues within the transmembrane segment of syntaxin (Syx), a plasma membrane protein essential for exocytosis, altered neurotransmitter flux through fusion pores and altered pore conductance. The residues that influenced fusion-pore flux lay along one face of an {alpha}-helical model. Thus, the fusion pore is formed at least in part by a circular arrangement of 5 to 8 Syx transmembrane segments in the plasma membrane.

Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.

* To whom correspondence should be addressed. E-mail: mjackson{at}physiology.wisc.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Titration of Syntaxin1 in Mammalian Synapses Reveals Multiple Roles in Vesicle Docking, Priming, and Release Probability.
M. Arancillo, S.-W. Min, S. Gerber, A. Munster-Wandowski, Y.-J. Wu, M. Herman, T. Trimbuch, J.-C. Rah, G. Ahnert-Hilger, D. Riedel, et al. (2013)
J. Neurosci. 33, 16698-16714
   Abstract »    Full Text »    PDF »
Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction.
A. Megighian, M. Zordan, S. Pantano, M. Scorzeto, M. Rigoni, D. Zanini, O. Rossetto, and C. Montecucco (2013)
J. Cell Sci. 126, 3134-3140
   Abstract »    Full Text »    PDF »
Fusion Pores, SNAREs, and Exocytosis.
N. Vardjan, J. Jorgacevski, and R. Zorec (2013)
Neuroscientist 19, 160-174
   Abstract »    Full Text »    PDF »
Dance of the SNAREs: Assembly and Rearrangements Detected with FRET at Neuronal Synapses.
V. Degtyar, I. M. Hafez, C. Bray, and R. S. Zucker (2013)
J. Neurosci. 33, 5507-5523
   Abstract »    Full Text »    PDF »
Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis.
H. Kasai, N. Takahashi, and H. Tokumaru (2012)
Physiol Rev 92, 1915-1964
   Abstract »    Full Text »    PDF »
Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion.
T. Y. Liu, X. Bian, S. Sun, X. Hu, R. W. Klemm, W. A. Prinz, T. A. Rapoport, and J. Hu (2012)
PNAS 109, E2146-E2154
   Abstract »    Full Text »    PDF »
Adhesion energy can regulate vesicle fusion and stabilize partially fused states.
R. Long, C.-Y. Hui, A. Jagota, and M. Bykhovskaia (2012)
J R Soc Interface 9, 1555-1567
   Abstract »    Full Text »    PDF »
SNARE Proteins: One to Fuse and Three to Keep the Nascent Fusion Pore Open.
L. Shi, Q.-T. Shen, A. Kiel, J. Wang, H.-W. Wang, T. J. Melia, J. E. Rothman, and F. Pincet (2012)
Science 335, 1355-1359
   Abstract »    Full Text »    PDF »
Comparison of Plasma Membrane Proteomic Changes of Arabidopsis Suspension-Cultured Cells (T87 Line) after Cold and ABA Treatment in Association with Freezing Tolerance Development.
B. Li, D. Takahashi, Y. Kawamura, and M. Uemura (2012)
Plant Cell Physiol. 53, 543-554
   Abstract »    Full Text »    PDF »
The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles.
B. Strasser, J. Iwaszkiewicz, O. Michielin, and A. Mayer (2011)
EMBO J. 30, 4126-4141
   Abstract »    Full Text »    PDF »
Resolving the Function of Distinct Munc18-1/SNARE Protein Interaction Modes in a Reconstituted Membrane Fusion Assay.
Y. Schollmeier, J. M. Krause, S. Kreye, J. Malsam, and T. H. Sollner (2011)
J. Biol. Chem. 286, 30582-30590
   Abstract »    Full Text »    PDF »
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses.
R. Sinha, S. Ahmed, R. Jahn, and J. Klingauf (2011)
PNAS 108, 14318-14323
   Abstract »    Full Text »    PDF »
Counting the SNAREs needed for membrane fusion.
G. van den Bogaart and R. Jahn (2011)
J Mol Cell Biol 3, 204-205
   Abstract »    Full Text »    PDF »
Munc18-1 Tuning of Vesicle Merger and Fusion Pore Properties.
J. Jorgacevski, M. Potokar, S. Grilc, M. Kreft, W. Liu, J. W. Barclay, J. Buckers, R. Medda, S. W. Hell, V. Parpura, et al. (2011)
J. Neurosci. 31, 9055-9066
   Abstract »    Full Text »    PDF »
P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells.
Y. Gutierrez-Martin, D. Bustillo, R. Gomez-Villafuertes, J. Sanchez-Nogueiro, C. Torregrosa-Hetland, T. Binz, L. M. Gutierrez, M. T. Miras-Portugal, and A. R. Artalejo (2011)
J. Biol. Chem. 286, 11370-11381
   Abstract »    Full Text »    PDF »
Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers.
M. K. Knowles, S. Barg, L. Wan, M. Midorikawa, X. Chen, and W. Almers (2010)
PNAS 107, 20810-20815
   Abstract »    Full Text »    PDF »
Role of the synaptobrevin C terminus in fusion pore formation.
A. N. Ngatchou, K. Kisler, Q. Fang, A. M. Walter, Y. Zhao, D. Bruns, J. B. Sorensen, and M. Lindau (2010)
PNAS 107, 18463-18468
   Abstract »    Full Text »    PDF »
Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes.
R. Mohrmann, H. de Wit, M. Verhage, E. Neher, and J. B. Sorensen (2010)
Science 330, 502-505
   Abstract »    Full Text »    PDF »
Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction.
A. Megighian, M. Scorzeto, D. Zanini, S. Pantano, M. Rigoni, C. Benna, O. Rossetto, C. Montecucco, and M. Zordan (2010)
J. Cell Sci. 123, 3276-3283
   Abstract »    Full Text »    PDF »
Transmembrane-domain determinants for SNARE-mediated membrane fusion.
E. Fdez, M. Martinez-Salvador, M. Beard, P. Woodman, and S. Hilfiker (2010)
J. Cell Sci. 123, 2473-2480
   Abstract »    Full Text »    PDF »
Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells.
L. Feinshreiber, D. Singer-Lahat, R. Friedrich, U. Matti, A. Sheinin, O. Yizhar, R. Nachman, D. Chikvashvili, J. Rettig, U. Ashery, et al. (2010)
J. Cell Sci. 123, 1940-1947
   Abstract »    Full Text »    PDF »
Phosphatidylserine Regulation of Ca2+-triggered Exocytosis and Fusion Pores in PC12 Cells.
Z. Zhang, E. Hui, E. R. Chapman, and M. B. Jackson (2009)
Mol. Biol. Cell 20, 5086-5095
   Abstract »    Full Text »    PDF »
Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion.
M. K. Domanska, V. Kiessling, A. Stein, D. Fasshauer, and L. K. Tamm (2009)
J. Biol. Chem. 284, 32158-32166
   Abstract »    Full Text »    PDF »
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
D. J. James, J. Kowalchyk, N. Daily, M. Petrie, and T. F. J. Martin (2009)
PNAS 106, 17308-17313
   Abstract »    Full Text »    PDF »
Capture and release of partially zipped trans-SNARE complexes on intact organelles.
M. L. Schwartz and A. J. Merz (2009)
J. Cell Biol. 185, 535-549
   Abstract »    Full Text »    PDF »
Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23.
V. Montana, W. Liu, U. Mohideen, and V. Parpura (2009)
J. Physiol. 587, 1943-1960
   Abstract »    Full Text »    PDF »
A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol.
J. Tong, P. P. Borbat, J. H. Freed, and Y.-K. Shin (2009)
PNAS 106, 5141-5146
   Abstract »    Full Text »    PDF »
Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming.
H. Cai, K. Reim, F. Varoqueaux, S. Tapechum, K. Hill, J. B. Sorensen, N. Brose, and R. H. Chow (2008)
PNAS 105, 19538-19543
   Abstract »    Full Text »    PDF »
Synaptotagmin-1 Utilizes Membrane Bending and SNARE Binding to Drive Fusion Pore Expansion.
K. L. Lynch, R. R.L. Gerona, D. M. Kielar, S. Martens, H. T. McMahon, and T. F.J. Martin (2008)
Mol. Biol. Cell 19, 5093-5103
   Abstract »    Full Text »    PDF »
The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics.
Q. Fang, K. Berberian, L.-W. Gong, I. Hafez, J. B. Sorensen, and M. Lindau (2008)
PNAS 105, 15388-15392
   Abstract »    Full Text »    PDF »
A Role for Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor Complex Dimerization during Neurosecretion.
E. Fdez, T. A. Jowitt, M.-C. Wang, M. Rajebhosale, K. Foster, J. Bella, C. Baldock, P. G. Woodman, and S. Hilfiker (2008)
Mol. Biol. Cell 19, 3379-3389
   Abstract »    Full Text »    PDF »
DOC2B Acts as a Calcium Switch and Enhances Vesicle Fusion.
R. Friedrich, A. J. Groffen, E. Connell, J. R. T. van Weering, O. Gutman, Y. I. Henis, B. Davletov, and U. Ashery (2008)
J. Neurosci. 28, 6794-6806
   Abstract »    Full Text »    PDF »
The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes.
Y. Liu, R. Tewari, J. Ning, A. M. Blagborough, S. Garbom, J. Pei, N. V. Grishin, R. E. Steele, R. E. Sinden, W. J. Snell, et al. (2008)
Genes & Dev. 22, 1051-1068
   Abstract »    Full Text »    PDF »
SNARE-catalyzed Fusion Events Are Regulated by Syntaxin1A-Lipid Interactions.
A. D. Lam, P. Tryoen-Toth, B. Tsai, N. Vitale, and E. L. Stuenkel (2008)
Mol. Biol. Cell 19, 485-497
   Abstract »    Full Text »    PDF »
Temperature Dependence of Fusion Kinetics and Fusion Pores in Ca2+-triggered Exocytosis from PC12 Cells.
Z. Zhang and M. B. Jackson (2008)
J. Gen. Physiol. 131, 117-124
   Abstract »    Full Text »    PDF »
Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating.
N. Vardjan, M. Stenovec, J. Jorgacevski, M. Kreft, and R. Zorec (2007)
J. Physiol. 585, 655-661
   Abstract »    Full Text »    PDF »
Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing.
Y. Jun and W. Wickner (2007)
PNAS 104, 13010-13015
   Abstract »    Full Text »    PDF »
Presynaptic G-Protein-Coupled Receptors Regulate Synaptic Cleft Glutamate via Transient Vesicle Fusion.
E. J. Schwartz, T. Blackmer, T. Gerachshenko, and S. Alford (2007)
J. Neurosci. 27, 5857-5868
   Abstract »    Full Text »    PDF »
Stringent 3Q{middle dot}1R Composition of the SNARE 0-Layer Can Be Bypassed for Fusion by Compensatory SNARE Mutation or by Lipid Bilayer Modification.
R. A. Fratti, K. M. Collins, C. M. Hickey, and W. Wickner (2007)
J. Biol. Chem. 282, 14861-14867
   Abstract »    Full Text »    PDF »
Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells.
K. L. Lynch and T. F. J. Martin (2007)
J. Cell Sci. 120, 617-627
   Abstract »    Full Text »    PDF »
Stimulus-Dependent Alterations in Quantal Neurotransmitter Release.
C. P. Grabner and A. P. Fox (2006)
J Neurophysiol 96, 3082-3087
   Abstract »    Full Text »    PDF »
Calcium signaling and exocytosis in adrenal chromaffin cells..
A. G. Garcia, A. M. Garcia-De-Diego, L. Gandia, R. Borges, and J. Garcia-Sancho (2006)
Physiol Rev 86, 1093-1131
   Abstract »    Full Text »    PDF »
Dissecting docking and tethering of secretory vesicles at the target membrane.
R. F. Toonen, O. Kochubey, H. de Wit, A. Gulyas-Kovacs, B. Konijnenburg, J. B. Sorensen, J. Klingauf, and M. Verhage (2006)
EMBO J. 25, 3725-3737
   Abstract »    Full Text »    PDF »
FUS1 Regulates the Opening and Expansion of Fusion Pores between Mating Yeast.
S. Nolan, A. E. Cowan, D. E. Koppel, H. Jin, and E. Grote (2006)
Mol. Biol. Cell 17, 2439-2450
   Abstract »    Full Text »    PDF »
Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion..
A. Elhamdani, F. Azizi, and C. R. Artalejo (2006)
J. Neurosci. 26, 3030-3036
   Abstract »    Full Text »    PDF »
G protein beta{gamma}-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties..
H. Photowala, T. Blackmer, E. Schwartz, H. E. Hamm, and S. Alford (2006)
PNAS 103, 4281-4286
   Abstract »    Full Text »    PDF »
Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles.
J. B. Sorensen, K. Wiederhold, E. M. Muller, I. Milosevic, G. Nagy, B. L. de Groot, H. Grubmuller, and D. Fasshauer (2006)
EMBO J. 25, 955-966
   Abstract »    Full Text »    PDF »
Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
O. Zamir and M. P. Charlton (2006)
J. Physiol. 571, 83-99
   Abstract »    Full Text »    PDF »
Cysteine-Disulfide Cross-linking to Monitor SNARE Complex Assembly during Endoplasmic Reticulum-Golgi Transport.
J. J. Flanagan and C. Barlowe (2006)
J. Biol. Chem. 281, 2281-2288
   Abstract »    Full Text »    PDF »
Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis.
X. Han and M. B. Jackson (2006)
J. Cell Biol. 172, 281-293
   Abstract »    Full Text »    PDF »
Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion.
C. Reese and A. Mayer (2005)
J. Cell Biol. 171, 981-990
   Abstract »    Full Text »    PDF »
Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain.
G. Nagy, I. Milosevic, D. Fasshauer, E. M. Muller, B. L. de Groot, T. Lang, M. C. Wilson, and J. B. Sorensen (2005)
Mol. Biol. Cell 16, 5675-5685
   Abstract »    Full Text »    PDF »
Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion.
M. A. Churchward, T. Rogasevskaia, J. Hofgen, J. Bau, and J. R. Coorssen (2005)
J. Cell Sci. 118, 4833-4848
   Abstract »    Full Text »    PDF »
Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins.
S. Kim, T.-J. Jeon, A. Oberai, D. Yang, J. J. Schmidt, and J. U. Bowie (2005)
PNAS 102, 14278-14283
   Abstract »    Full Text »    PDF »
SCAMP2 Interacts with Arf6 and Phospholipase D1 and Links Their Function to Exocytotic Fusion Pore Formation in PC12 Cells.
L. Liu, H. Liao, A. Castle, J. Zhang, J. Casanova, G. Szabo, and D. Castle (2005)
Mol. Biol. Cell 16, 4463-4472
   Abstract »    Full Text »    PDF »
Synaptotagmin Isoforms Couple Distinct Ranges of Ca2+, Ba2+, and Sr2+ Concentration to SNARE-mediated Membrane Fusion.
A. Bhalla, W. C. Tucker, and E. R. Chapman (2005)
Mol. Biol. Cell 16, 4755-4764
   Abstract »    Full Text »    PDF »
Selective nucleotide-release from dense-core granules in insulin-secreting cells.
S. Obermuller, A. Lindqvist, J. Karanauskaite, J. Galvanovskis, P. Rorsman, and S. Barg (2005)
J. Cell Sci. 118, 4271-4282
   Abstract »    Full Text »    PDF »
Amisyn Regulates Exocytosis and Fusion Pore Stability by Both Syntaxin-dependent and Syntaxin-independent Mechanisms.
J. R. L. Constable, M. E. Graham, A. Morgan, and R. D. Burgoyne (2005)
J. Biol. Chem. 280, 31615-31623
   Abstract »    Full Text »    PDF »
Brevity of the Ca2+ Microdomain and Active Zone Geometry Prevent Ca2+-Sensor Saturation for Neurotransmitter Release.
V. Shahrezaei and K. R. Delaney (2005)
J Neurophysiol 94, 1912-1919
   Abstract »    Full Text »    PDF »
Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing.
C. Ungermann and D. Langosch (2005)
J. Cell Sci. 118, 3819-3828
   Abstract »    Full Text »    PDF »
Membrane Fusion Induced by Neuronal SNAREs Transits through Hemifusion.
X. Lu, F. Zhang, J. A. McNew, and Y.-K. Shin (2005)
J. Biol. Chem. 280, 30538-30541
   Abstract »    Full Text »    PDF »
SNAREs can promote complete fusion and hemifusion as alternative outcomes.
C. G. Giraudo, C. Hu, D. You, A. M. Slovic, E. V. Mosharov, D. Sulzer, T. J. Melia, and J. E. Rothman (2005)
J. Cell Biol. 170, 249-260
   Abstract »    Full Text »    PDF »
Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins.
E. Zaitseva, A. Mittal, D. E. Griffin, and L. V. Chernomordik (2005)
J. Cell Biol. 169, 167-177
   Abstract »    Full Text »    PDF »
Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles.
D. A. Richards, J. Bai, and E. R. Chapman (2005)
J. Cell Biol. 168, 929-939
   Abstract »    Full Text »    PDF »
The Plasma Membrane Q-SNARE Syntaxin 2 Enters the Zymogen Granule Membrane during Exocytosis in the Pancreatic Acinar Cell.
J. A. Pickett, P. Thorn, and J. M. Edwardson (2005)
J. Biol. Chem. 280, 1506-1511
   Abstract »    Full Text »    PDF »
Cycling of Synaptic Vesicles: How Far? How Fast!.
T. Galli and V. Haucke (2004)
Sci. STKE 2004, re19
   Abstract »    Full Text »    PDF »
Comment on "Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis".
J. A. Szule and J. R. Coorssen (2004)
Science 306, 813b
   Full Text »    PDF »
Response to Comment on "Transmembrane Segments of Syntaxin Line the Fusion Pore of Ca2+-Triggered Exocytosis".
X. Han and M. B. Jackson (2004)
Science 306, 813c
   Full Text »    PDF »
Regulation of the Fusion Pore Conductance during Exocytosis by Cyclin-dependent Kinase 5.
J. W. Barclay, M. Aldea, T. J. Craig, A. Morgan, and R. D. Burgoyne (2004)
J. Biol. Chem. 279, 41495-41503
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882