Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 304 (5669): 435-438

Copyright © 2004 by the American Association for the Advancement of Science

Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs

Ward C. Tucker,1 Thomas Weber,2 Edwin R. Chapman1*

Abstract: We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of syt-stimulated fusion was modulated by changes in lipid composition of the vesicles and by a truncation that mimics cleavage of SNAP-25 by botulinum neurotoxin A. Stimulation of fusion was abolished by disrupting the Ca2+-binding activity, or by severing the tandem C2 domains, of syt. Thus, syt and SNAREs are likely to represent the minimal protein complement for Ca2+-triggered exocytosis.

1 Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
2 Carl C. Icahn Center for Gene Therapy and Molecular Medicine and the Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.

* To whom correspondence should be addressed. E-mail: chapman{at}

Mutations that disrupt Ca2+-binding activity endow Doc2{beta} with novel functional properties during synaptic transmission.
J. D. Gaffaney, R. Xue, and E. R. Chapman (2014)
Mol. Biol. Cell 25, 481-494
   Abstract »    Full Text »    PDF »
Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes.
X. Li, A. G. Garrity, and H. Xu (2013)
J. Physiol. 591, 4389-4401
   Abstract »    Full Text »    PDF »
Critical Role of Cortical Vesicles in Dissecting Regulated Exocytosis: Overview of Insights Into Fundamental Molecular Mechanisms.
P. S. Abbineni, J. E. Hibbert, and J. R. Coorssen (2013)
Biol. Bull. 224, 200-217
   Abstract »    Full Text »    PDF »
I{kappa}B kinase phosphorylation of SNAP-23 controls platelet secretion.
Z. A. Karim, J. Zhang, M. Banerjee, M. C. Chicka, R. Al Hawas, T. R. Hamilton, P. A. Roche, and S. W. Whiteheart (2013)
Blood 121, 4567-4574
   Abstract »    Full Text »    PDF »
Dance of the SNAREs: Assembly and Rearrangements Detected with FRET at Neuronal Synapses.
V. Degtyar, I. M. Hafez, C. Bray, and R. S. Zucker (2013)
J. Neurosci. 33, 5507-5523
   Abstract »    Full Text »    PDF »
Genetic Analysis of Synaptotagmin C2 Domain Specificity in Regulating Spontaneous and Evoked Neurotransmitter Release.
J. Lee, Z. Guan, Y. Akbergenova, and J. T. Littleton (2013)
J. Neurosci. 33, 187-200
   Abstract »    Full Text »    PDF »
Strontium Is a Biased Agonist of the Calcium-Sensing Receptor in Rat Medullary Thyroid Carcinoma 6-23 Cells.
A. R. B. Thomsen, J. Worm, S. E. Jacobsen, M. Stahlhut, M. Latta, and H. Brauner-Osborne (2012)
J. Pharmacol. Exp. Ther. 343, 638-649
   Abstract »    Full Text »    PDF »
G{beta}{gamma} Inhibits Exocytosis via Interaction with Critical Residues on Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein-25.
C. A. Wells, Z. Zurawski, K. M. Betke, Y. Y. Yim, K. Hyde, S. Rodriguez, S. Alford, and H. E. Hamm (2012)
Mol. Pharmacol. 82, 1136-1149
   Abstract »    Full Text »    PDF »
Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis.
H. Kasai, N. Takahashi, and H. Tokumaru (2012)
Physiol Rev 92, 1915-1964
   Abstract »    Full Text »    PDF »
Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion.
K. L. Boswell, D. J. James, J. M. Esquibel, S. Bruinsma, R. Shirakawa, H. Horiuchi, and T. F. J. Martin (2012)
J. Cell Biol. 197, 301-312
   Abstract »    Full Text »    PDF »
Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion.
Z. Wang, H. Liu, Y. Gu, and E. R. Chapman (2011)
J. Cell Biol. 195, 1159-1170
   Abstract »    Full Text »    PDF »
Dual roles of Munc18-1 rely on distinct binding modes of the central cavity with Stx1A and SNARE complex.
L. Shi, D. Kummel, J. Coleman, T. J. Melia, and C. G. Giraudo (2011)
Mol. Biol. Cell 22, 4150-4160
   Abstract »    Full Text »    PDF »
Association of the Endosomal Sorting Complex ESCRT-II with the Vps20 Subunit of ESCRT-III Generates a Curvature-sensitive Complex Capable of Nucleating ESCRT-III Filaments.
I. Fyfe, A. L. Schuh, J. M. Edwardson, and A. Audhya (2011)
J. Biol. Chem. 286, 34262-34270
   Abstract »    Full Text »    PDF »
In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release.
M. Kyoung, A. Srivastava, Y. Zhang, J. Diao, M. Vrljic, P. Grob, E. Nogales, S. Chu, and A. T. Brunger (2011)
PNAS 108, E304-E313
   Abstract »    Full Text »    PDF »
Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells.
Z. Zhang, Y. Wu, Z. Wang, F. M. Dunning, J. Rehfuss, D. Ramanan, E. R. Chapman, and M. B. Jackson (2011)
Mol. Biol. Cell 22, 2324-2336
   Abstract »    Full Text »    PDF »
Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion.
C. P. Johnson and E. R. Chapman (2010)
J. Cell Biol. 191, 187-197
   Abstract »    Full Text »    PDF »
Rat and Drosophila Synaptotagmin 4 Have Opposite Effects during SNARE-catalyzed Membrane Fusion.
Z. Wang and E. R. Chapman (2010)
J. Biol. Chem. 285, 30759-30766
   Abstract »    Full Text »    PDF »
Regulation of Exocytosis and Fusion Pores by Synaptotagmin-Effector Interactions.
Z. Zhang, E. Hui, E. R. Chapman, and M. B. Jackson (2010)
Mol. Biol. Cell 21, 2821-2831
   Abstract »    Full Text »    PDF »
Calcium-dependent Regulation of SNARE-mediated Membrane Fusion by Calmodulin.
J. Di Giovanni, C. Iborra, Y. Maulet, C. Leveque, O. El Far, and M. Seagar (2010)
J. Biol. Chem. 285, 23665-23675
   Abstract »    Full Text »    PDF »
Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1.
H. K. Lee, Y. Yang, Z. Su, C. Hyeon, T. S. Lee, H. W. Lee, D. H. Kweon, Y. K. Shin, and T. Y. Yoon (2010)
Science 328, 760-763
   Abstract »    Full Text »    PDF »
Doc2b Is a High-Affinity Ca2+ Sensor for Spontaneous Neurotransmitter Release.
A. J. Groffen, S. Martens, R. D. Arazola, L. N. Cornelisse, N. Lozovaya, A. P. H. de Jong, N. A. Goriounova, R. L. P. Habets, Y. Takai, J. G. Borst, et al. (2010)
Science 327, 1614-1618
   Abstract »    Full Text »    PDF »
Discrimination between docking and fusion of liposomes reconstituted with neuronal SNARE-proteins using FCS.
A. Cypionka, A. Stein, J. M. Hernandez, H. Hippchen, R. Jahn, and P. J. Walla (2009)
PNAS 106, 18575-18580
   Abstract »    Full Text »    PDF »
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
D. J. James, J. Kowalchyk, N. Daily, M. Petrie, and T. F. J. Martin (2009)
PNAS 106, 17308-17313
   Abstract »    Full Text »    PDF »
The Ca2+ Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate.
A. Radhakrishnan, A. Stein, R. Jahn, and D. Fasshauer (2009)
J. Biol. Chem. 284, 25749-25760
   Abstract »    Full Text »    PDF »
Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23.
V. Montana, W. Liu, U. Mohideen, and V. Parpura (2009)
J. Physiol. 587, 1943-1960
   Abstract »    Full Text »    PDF »
Differential Effects of Divalent Cations on Spontaneous and Evoked Glycine Release From Spinal Interneurons.
M. Maeda, E. Tanaka, K. Shoudai, K. Nonaka, N. Murayama, Y. Ito, and N. Akaike (2009)
J Neurophysiol 101, 1103-1113
   Abstract »    Full Text »    PDF »
DOC2B: A Novel Syntaxin-4 Binding Protein Mediating Insulin-Regulated GLUT4 Vesicle Fusion in Adipocytes.
N. Fukuda, M. Emoto, Y. Nakamori, A. Taguchi, S. Miyamoto, S. Uraki, Y. Oka, and Y. Tanizawa (2009)
Diabetes 58, 377-384
   Abstract »    Full Text »    PDF »
Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro: CRITICAL RESIDUES REVEALED BY SCANNING ALANINE MUTAGENESIS.
J. D. Gaffaney, F. M. Dunning, Z. Wang, E. Hui, and E. R. Chapman (2008)
J. Biol. Chem. 283, 31763-31775
   Abstract »    Full Text »    PDF »
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones.
J. Mima, C. M. Hickey, H. Xu, Y. Jun, and W. Wickner (2008)
EMBO J. 27, 2031-2042
   Abstract »    Full Text »    PDF »
Analysis of the Synaptotagmin Family during Reconstituted Membrane Fusion: UNCOVERING A CLASS OF INHIBITORY ISOFORMS.
A. Bhalla, M. C. Chicka, and E. R. Chapman (2008)
J. Biol. Chem. 283, 21799-21807
   Abstract »    Full Text »    PDF »
SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes.
D. Tareste, J. Shen, T. J. Melia, and J. E. Rothman (2008)
PNAS 105, 2380-2385
   Abstract »    Full Text »    PDF »
Synaptotagmin VII splice variants {alpha}, , and {delta} are expressed in pancreatic -cells and regulate insulin exocytosis.
B. R. Gauthier, D. L. Duhamel, M. Iezzi, S. Theander, F. Saltel, M. Fukuda, B. Wehrle-Haller, and C. B. Wollheim (2008)
FASEB J 22, 194-206
   Abstract »    Full Text »    PDF »
Synaptotagmin C2A Loop 2 Mediates Ca2+-dependent SNARE Interactions Essential for Ca2+-triggered Vesicle Exocytosis.
K. L. Lynch, R.R.L. Gerona, E. C. Larsen, R. F. Marcia, J. C. Mitchell, and T.F.J. Martin (2007)
Mol. Biol. Cell 18, 4957-4968
   Abstract »    Full Text »    PDF »
Receptor-mediated Regulation of Tomosyn-Syntaxin 1A Interactions in Bovine Adrenal Chromaffin Cells.
S. E. Gladycheva, A. D. Lam, J. Liu, M. D'Andrea-Merrins, O. Yizhar, S. I. Lentz, U. Ashery, S. A. Ernst, and E. L. Stuenkel (2007)
J. Biol. Chem. 282, 22887-22899
   Abstract »    Full Text »    PDF »
Determinants of Synaptobrevin Regulation in Membranes.
T. J. Siddiqui, O. Vites, A. Stein, R. Heintzmann, R. Jahn, and D. Fasshauer (2007)
Mol. Biol. Cell 18, 2037-2046
   Abstract »    Full Text »    PDF »
How Synaptotagmin Promotes Membrane Fusion.
S. Martens, M. M. Kozlov, and H. T. McMahon (2007)
Science 316, 1205-1208
   Abstract »    Full Text »    PDF »
Stringent 3Q{middle dot}1R Composition of the SNARE 0-Layer Can Be Bypassed for Fusion by Compensatory SNARE Mutation or by Lipid Bilayer Modification.
R. A. Fratti, K. M. Collins, C. M. Hickey, and W. Wickner (2007)
J. Biol. Chem. 282, 14861-14867
   Abstract »    Full Text »    PDF »
Mechanism of Substrate Recognition by Botulinum Neurotoxin Serotype A.
S. Chen, J.-J. P. Kim, and J. T. Barbieri (2007)
J. Biol. Chem. 282, 9621-9627
   Abstract »    Full Text »    PDF »
Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells.
K. L. Lynch and T. F. J. Martin (2007)
J. Cell Sci. 120, 617-627
   Abstract »    Full Text »    PDF »
Expression and Function of Synaptotagmin VII in CTLs.
K. T. Fowler, N. W. Andrews, and J. W. Huleatt (2007)
J. Immunol. 178, 1498-1504
   Abstract »    Full Text »    PDF »
RalA and RalB Function as the Critical GTP Sensors for GTP-Dependent Exocytosis.
G. Li, L. Han, T.-C. Chou, Y. Fujita, L. Arunachalam, A. Xu, A. Wong, S.-K. Chiew, Q. Wan, L. Wang, et al. (2007)
J. Neurosci. 27, 190-202
   Abstract »    Full Text »    PDF »
Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion.
J. Vicogne, D. Vollenweider, J. R. Smith, P. Huang, M. A. Frohman, and J. E. Pessin (2006)
PNAS 103, 14761-14766
   Abstract »    Full Text »    PDF »
Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes.
C. Czibener, N. M. Sherer, S. M. Becker, M. Pypaert, E. Hui, E. R. Chapman, W. Mothes, and N. W. Andrews (2006)
J. Cell Biol. 174, 997-1007
   Abstract »    Full Text »    PDF »
A Clamping Mechanism Involved in SNARE-Dependent Exocytosis.
C. G. Giraudo, W. S. Eng, T. J. Melia, and J. E. Rothman (2006)
Science 313, 676-680
   Abstract »    Full Text »    PDF »
Synaptotagmins: mediators of Ca2+-regulated vesicle fusion. Focus on "Stable gene silencing of synaptotagmin I in rat PC12 cells inhibits Ca2+-evoked release of catecholamine".
G. Apodaca (2006)
Am J Physiol Cell Physiol 291, C234-C236
   Full Text »    PDF »
Rolling Blackout Is Required for Synaptic Vesicle Exocytosis.
F.-D. Huang, E. Woodruff, R. Mohrmann, and K. Broadie (2006)
J. Neurosci. 26, 2369-2379
   Abstract »    Full Text »    PDF »
Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis.
X. Han and M. B. Jackson (2006)
J. Cell Biol. 172, 281-293
   Abstract »    Full Text »    PDF »
Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation.
C.-T. Wang, J. Bai, P. Y. Chang, E. R. Chapman, and M. B. Jackson (2006)
J. Physiol. 570, 295-307
   Abstract »    Full Text »    PDF »
Synaptotagmin VII Is Targeted to Secretory Organelles in PC12 Cells, Where It Functions as a High-Affinity Calcium Sensor.
P. Wang, M. C. Chicka, A. Bhalla, D. A. Richards, and E. R. Chapman (2005)
Mol. Cell. Biol. 25, 8693-8702
   Abstract »    Full Text »    PDF »
SCAMP2 Interacts with Arf6 and Phospholipase D1 and Links Their Function to Exocytotic Fusion Pore Formation in PC12 Cells.
L. Liu, H. Liao, A. Castle, J. Zhang, J. Casanova, G. Szabo, and D. Castle (2005)
Mol. Biol. Cell 16, 4463-4472
   Abstract »    Full Text »    PDF »
Synaptotagmin Isoforms Couple Distinct Ranges of Ca2+, Ba2+, and Sr2+ Concentration to SNARE-mediated Membrane Fusion.
A. Bhalla, W. C. Tucker, and E. R. Chapman (2005)
Mol. Biol. Cell 16, 4755-4764
   Abstract »    Full Text »    PDF »
Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing.
C. Ungermann and D. Langosch (2005)
J. Cell Sci. 118, 3819-3828
   Abstract »    Full Text »    PDF »
Ion Regulation of Homotypic Vacuole Fusion in Saccharomyces cerevisiae.
V. J. Starai, N. Thorngren, R. A. Fratti, and W. Wickner (2005)
J. Biol. Chem. 280, 16754-16762
   Abstract »    Full Text »    PDF »
Three distinct kinetic groupings of the synaptotagmin family: Candidate sensors for rapid and delayed exocytosis.
E. Hui, J. Bai, P. Wang, M. Sugimori, R. R. Llinas, and E. R. Chapman (2005)
PNAS 102, 5210-5214
   Abstract »    Full Text »    PDF »
Molecular Regulation of Membrane Resealing in 3T3 Fibroblasts.
S. S. Shen, W. C. Tucker, E. R. Chapman, and R. A. Steinhardt (2005)
J. Biol. Chem. 280, 1652-1660
   Abstract »    Full Text »    PDF »
Cycling of Synaptic Vesicles: How Far? How Fast!.
T. Galli and V. Haucke (2004)
Sci. STKE 2004, re19
   Abstract »    Full Text »    PDF »
The Synaptotagmins: Calcium Sensors for Vesicular Trafficking.
M. Yoshihara and E. S. Montana (2004)
Neuroscientist 10, 566-574
   Abstract »    PDF »
De novo design of conformationally flexible transmembrane peptides driving membrane fusion.
M. W. Hofmann, K. Weise, J. Ollesch, P. Agrawal, H. Stalz, W. Stelzer, F. Hulsbergen, H. de Groot, K. Gerwert, J. Reed, et al. (2004)
PNAS 101, 14776-14781
   Abstract »    Full Text »    PDF »
Sec1p directly stimulates SNARE-mediated membrane fusion in vitro.
B. L. Scott, J. S. Van Komen, H. Irshad, S. Liu, K. A. Wilson, and J. A. McNew (2004)
J. Cell Biol. 167, 75-85
   Abstract »    Full Text »    PDF »
Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release.
T.-i. Nishiki and G. J. Augustine (2004)
J. Neurosci. 24, 8542-8550
   Abstract »    Full Text »    PDF »
A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
N. Thorngren, K. M. Collins, R. A. Fratti, W. Wickner, and A. J. Merz (2004)
EMBO J. 23, 2765-2776
   Abstract »    Full Text »    PDF »
Linking Albinism and Immunity: The Secrets of Secretory Lysosomes.
J. Stinchcombe, G. Bossi, and G. M. Griffiths (2004)
Science 305, 55-59
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882