Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 304 (5670): 596-600

Copyright © 2004 by the American Association for the Advancement of Science

Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD

Andrei V. Budanov,1,2* Anna A. Sablina,1,3* Elena Feinstein,4 Eugene V. Koonin,5 Peter M. Chumakov1,2{dagger}

Abstract: Acting as a signal, hydrogen peroxide circumvents antioxidant defense by overoxidizing peroxiredoxins (Prxs), the enzymes that metabolize peroxides. We show that sestrins, a family of proteins whose expression is modulated by p53, are required for regeneration of Prxs containing Cys-SO2H, thus reestablishing the antioxidant firewall. Sestrins contain a predicted redox-active domain homologous to AhpD, the enzyme catalyzing the reduction of a bacterial Prx, AhpC. Purified Hi95 (sestrin 2) protein supports adenosine triphosphate–dependent reduction of overoxidized PrxI in vitro, indicating that unlike AhpD, which is a disulfide reductase, sestrins are cysteine sulfinyl reductases. As modulators of peroxide signaling and antioxidant defense, sestrins constitute potential therapeutic targets.

1 Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
2 Engelhardt Institute of Molecular Biology, 119991, Moscow, Russia.
3 Cancer Research Center, 1154785 Moscow, Russia.
4 Quark Biotech Incorporated, Ness Ziona, 70400 Israel.
5 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom corresponding should be addressed. E-mail: chumakp{at}

Tumor suppressor p53 and its gain-of-function mutants in cancer.
J. Liu, C. Zhang, and Z. Feng (2014)
Acta Biochim Biophys Sin 46, 170-179
   Abstract »    Full Text »    PDF »
Histone Chaperone CHAF1A Inhibits Differentiation and Promotes Aggressive Neuroblastoma.
E. Barbieri, K. De Preter, M. Capasso, Z. Chen, D. M. Hsu, G. P. Tonini, S. Lefever, J. Hicks, R. Versteeg, A. Pession, et al. (2014)
Cancer Res. 74, 765-774
   Abstract »    Full Text »    PDF »
Cross Talk between Cellular Redox Status, Metabolism, and p53 in Neural Stem Cell Biology.
K. Forsberg and S. Di Giovanni (2014)
   Abstract »    Full Text »    PDF »
Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle.
E. B. Nascimento, M. E. Osler, and J. R. Zierath (2013)
Am J Physiol Endocrinol Metab 305, E1408-E1414
   Abstract »    Full Text »    PDF »
Sestrin-2, a repressor of PDGFR{beta} signalling, promotes cigarette-smoke-induced pulmonary emphysema in mice and is upregulated in individuals with COPD.
J. Heidler, A. Fysikopoulos, F. Wempe, M. Seimetz, T. Bangsow, A. Tomasovic, F. Veit, S. Scheibe, A. Pichl, F. Weisel, et al. (2013)
Dis. Model. Mech. 6, 1378-1387
   Abstract »    Full Text »    PDF »
Uncoupling Protein 2 Impacts Endothelial Phenotype via p53-Mediated Control of Mitochondrial Dynamics.
Y. Shimasaki, N. Pan, L. M. Messina, C. Li, K. Chen, L. Liu, M. P. Cooper, J. A. Vita, and J. F. Keaney Jr (2013)
Circ. Res. 113, 891-901
   Abstract »    Full Text »    PDF »
The Tumor Suppressor p53 Fine-Tunes Reactive Oxygen Species Levels and Neurogenesis via PI3 Kinase Signaling.
K. Forsberg, A. Wuttke, G. Quadrato, P. M. Chumakov, A. Wizenmann, and S. Di Giovanni (2013)
J. Neurosci. 33, 14318-14330
   Abstract »    Full Text »    PDF »
Chasing Cysteine Oxidative Modifications: Proteomic Tools for Characterizing Cysteine Redox Status.
C. I. Murray and J. E. Van Eyk (2012)
Circ Cardiovasc Genet 5, 591
   Full Text »    PDF »
Tp53-induced Glycolysis and Apoptosis Regulator (TIGAR) Protects Glioma Cells from Starvation-induced Cell Death by Up-regulating Respiration and Improving Cellular Redox Homeostasis.
C. Wanka, J. P. Steinbach, and J. Rieger (2012)
J. Biol. Chem. 287, 33436-33446
   Abstract »    Full Text »    PDF »
Peroxiredoxins, gerontogenes linking aging to genome instability and cancer.
T. Nystrom, J. Yang, and M. Molin (2012)
Genes & Dev. 26, 2001-2008
   Abstract »    Full Text »    PDF »
p53 Basic C Terminus Regulates p53 Functions through DNA Binding Modulation of Subset of Target Genes.
P.-J. Hamard, D. J. Lukin, and J. J. Manfredi (2012)
J. Biol. Chem. 287, 22397-22407
   Abstract »    Full Text »    PDF »
Structural Snapshots of Yeast Alkyl Hydroperoxide Reductase Ahp1 Peroxiredoxin Reveal a Novel Two-cysteine Mechanism of Electron Transfer to Eliminate Reactive Oxygen Species.
F.-M. Lian, J. Yu, X.-X. Ma, X.-J. Yu, Y. Chen, and C.-Z. Zhou (2012)
J. Biol. Chem. 287, 17077-17087
   Abstract »    Full Text »    PDF »
FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3.
J. Hagenbuchner, A. Kuznetsov, M. Hermann, B. Hausott, P. Obexer, and M. J. Ausserlechner (2012)
J. Cell Sci. 125, 1191-1203
   Abstract »    Full Text »    PDF »
Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction.
N. Olson, M. Hristova, N. H. Heintz, K. M. Lounsbury, and A. van der Vliet (2011)
Am J Physiol Lung Cell Mol Physiol 301, L993-L1002
   Abstract »    Full Text »    PDF »
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect.
C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang, A. J. Levine, W. Hu, and Z. Feng (2011)
PNAS 108, 16259-16264
   Abstract »    Full Text »    PDF »
Cellular stress response pathways and ageing: intricate molecular relationships.
N. Kourtis and N. Tavernarakis (2011)
EMBO J. 30, 2520-2531
   Abstract »    Full Text »    PDF »
The Role of p53 in Metabolic Regulation.
A. M. Puzio-Kuter (2011)
Genes & Cancer 2, 385-391
   Abstract »    Full Text »    PDF »
The Regulation of Aging and Longevity: A New and Complex Role of p53.
Z. Feng, M. Lin, and R. Wu (2011)
Genes & Cancer 2, 443-452
   Abstract »    Full Text »    PDF »
Tumor suppressor p53 meets microRNAs.
Z. Feng, C. Zhang, R. Wu, and W. Hu (2011)
J Mol Cell Biol 3, 44-50
   Abstract »    Full Text »    PDF »
Cancer Cell Metabolism.
R. A. Cairns, I. Harris, S. McCracken, and T. W. Mak (2011)
Cold Spring Harb Symp Quant Biol 76, 299-311
   Abstract »    Full Text »    PDF »
Requirement of the ATM/p53 Tumor Suppressor Pathway for Glucose Homeostasis.
H. L. Armata, D. Golebiowski, D. Y. Jung, H. J. Ko, J. K. Kim, and H. K. Sluss (2010)
Mol. Cell. Biol. 30, 5787-5794
   Abstract »    Full Text »    PDF »
The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes.
A. J. Levine and A. M. Puzio-Kuter (2010)
Science 330, 1340-1344
   Abstract »    Full Text »    PDF »
Stressin' Sestrins take an aging fight.
A. V. Budanov, J. H. Lee, and M. Karin (2010)
EMBO Mol Med. 2, 388-400
   Abstract »    Full Text »    PDF »
Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling.
E. W. Miller, B. C. Dickinson, and C. J. Chang (2010)
PNAS 107, 15681-15686
   Abstract »    Full Text »    PDF »
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.
S. Suzuki, T. Tanaka, M. V. Poyurovsky, H. Nagano, T. Mayama, S. Ohkubo, M. Lokshin, H. Hosokawa, T. Nakayama, Y. Suzuki, et al. (2010)
PNAS 107, 7461-7466
   Abstract »    Full Text »    PDF »
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function.
W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine, and Z. Feng (2010)
PNAS 107, 7455-7460
   Abstract »    Full Text »    PDF »
Burn Out or Fade Away?.
I. Topisirovic and N. Sonenberg (2010)
Science 327, 1210-1211
   Abstract »    Full Text »    PDF »
Sestrin as a Feedback Inhibitor of TOR That Prevents Age-Related Pathologies.
J. H. Lee, A. V. Budanov, E. J. Park, R. Birse, T. E. Kim, G. A. Perkins, K. Ocorr, M. H. Ellisman, R. Bodmer, E. Bier, et al. (2010)
Science 327, 1223-1228
   Abstract »    Full Text »    PDF »
Inactivation of sestrin 2 induces TGF-{beta} signaling and partially rescues pulmonary emphysema in a mouse model of COPD.
F. Wempe, S. De-Zolt, K. Koli, T. Bangsow, N. Parajuli, R. Dumitrascu, A. Sterner-Kock, N. Weissmann, J. Keski-Oja, and H. von Melchner (2010)
Dis. Model. Mech. 3, 246-253
   Abstract »    Full Text »    PDF »
Mechanisms of Ascorbate-Induced Cytotoxicity in Pancreatic Cancer.
J. Du, S. M. Martin, M. Levine, B. A. Wagner, G. R. Buettner, S.-h. Wang, A. F. Taghiyev, C. Du, C. M. Knudson, and J. J. Cullen (2010)
Clin. Cancer Res. 16, 509-520
   Abstract »    Full Text »    PDF »
Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells.
J. J. Molenaar, M. E. Ebus, D. Geerts, J. Koster, F. Lamers, L. J. Valentijn, E. M. Westerhout, R. Versteeg, and H. N. Caron (2009)
PNAS 106, 12968-12973
   Abstract »    Full Text »    PDF »
Novel Protective Mechanism against Irreversible Hyperoxidation of Peroxiredoxin: N{alpha}-TERMINAL ACETYLATION OF HUMAN PEROXIREDOXIN II.
J. H. Seo, J. C. Lim, D.-Y. Lee, K. S. Kim, G. Piszczek, H. W. Nam, Y. S. Kim, T. Ahn, C.-H. Yun, K. Kim, et al. (2009)
J. Biol. Chem. 284, 13455-13465
   Abstract »    Full Text »    PDF »
Tumor Protein 53-Induced Nuclear Protein 1 Is a Major Mediator of p53 Antioxidant Function.
C. E. Cano, J. Gommeaux, S. Pietri, M. Culcasi, S. Garcia, M. Seux, S. Barelier, S. Vasseur, R. P. Spoto, M.-J. Pebusque, et al. (2009)
Cancer Res. 69, 219-226
   Abstract »    Full Text »    PDF »
Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin.
H. Wang, A. Matsuzawa, S. A. Brown, J. Zhou, C. S. Guy, P.-H. Tseng, K. Forbes, T. P. Nicholson, P. W. Sheppard, H. Hacker, et al. (2008)
PNAS 105, 20197-20202
   Abstract »    Full Text »    PDF »
Post-transcriptional Modulation of Iron Homeostasis during p53-dependent Growth Arrest.
F. Zhang, W. Wang, Y. Tsuji, S. V. Torti, and F. M. Torti (2008)
J. Biol. Chem. 283, 33911-33918
   Abstract »    Full Text »    PDF »
Irreversible Oxidation of the Active-site Cysteine of Peroxiredoxin to Cysteine Sulfonic Acid for Enhanced Molecular Chaperone Activity.
J. C. Lim, H.-I. Choi, Y. S. Park, H. W. Nam, H. A. Woo, K.-S. Kwon, Y. S. Kim, S. G. Rhee, K. Kim, and H. Z. Chae (2008)
J. Biol. Chem. 283, 28873-28880
   Abstract »    Full Text »    PDF »
A Gene Signature-Based Approach Identifies mTOR as a Regulator of p73.
J. M. Rosenbluth, D. J. Mays, M. F. Pino, L. J. Tang, and J. A. Pietenpol (2008)
Mol. Cell. Biol. 28, 5951-5964
   Abstract »    Full Text »    PDF »
A Novel Antioxidant Function for the Tumor-Suppressor Gene p53 in the Retinal Ganglion Cell.
J. C. O'Connor, D. M. Wallace, C. J. O'Brien, and T. G. Cotter (2008)
Invest. Ophthalmol. Vis. Sci. 49, 4237-4244
   Abstract »    Full Text »    PDF »
Chronic Oxidative DNA Damage Due to DNA Repair Defects Causes Chromosomal Instability in Saccharomyces cerevisiae.
N. P. Degtyareva, L. Chen, P. Mieczkowski, T. D. Petes, and P. W. Doetsch (2008)
Mol. Cell. Biol. 28, 5432-5445
   Abstract »    Full Text »    PDF »
Evidence for the Formation of a Covalent Thiosulfinate Intermediate with Peroxiredoxin in the Catalytic Mechanism of Sulfiredoxin.
X. Roussel, G. Bechade, A. Kriznik, A. Van Dorsselaer, S. Sanglier-Cianferani, G. Branlant, and S. Rahuel-Clermont (2008)
J. Biol. Chem. 283, 22371-22382
   Abstract »    Full Text »    PDF »
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
J.-L. Gonzalez de Aguilar, C. Niederhauser-Wiederkehr, B. Halter, M. De Tapia, F. Di Scala, P. Demougin, L. Dupuis, M. Primig, V. Meininger, and J.-P. Loeffler (2008)
Physiol Genomics 32, 207-218
   Abstract »    Full Text »    PDF »
Inhibition of Estrogen-Mediated Uterine Gene Expression Responses by Dioxin.
D. R. Boverhof, L. D. Burgoon, K. J. Williams, and T. R. Zacharewski (2008)
Mol. Pharmacol. 73, 82-93
   Abstract »    Full Text »    PDF »
Regulation of Peroxiredoxins by Nitric Oxide in Immunostimulated Macrophages.
A. Diet, K. Abbas, C. Bouton, B. Guillon, F. Tomasello, S. Fourquet, M. B. Toledano, and J.-C. Drapier (2007)
J. Biol. Chem. 282, 36199-36205
   Abstract »    Full Text »    PDF »
p53-dependent stimulation of redox-related genes in the lymphoid organs of {gamma}-irradiated mice identification of Haeme-oxygenase 1 as a direct p53 target gene.
A. Meiller, S. Alvarez, P. Drane, C. Lallemand, B. Blanchard, M. Tovey, and E. May (2007)
Nucleic Acids Res. 35, 6924-6934
   Abstract »    Full Text »    PDF »
The Archaeon Methanosarcina acetivorans Contains a Protein Disulfide Reductase with an Iron-Sulfur Cluster.
D. J. Lessner and J. G. Ferry (2007)
J. Bacteriol. 189, 7475-7484
   Abstract »    Full Text »    PDF »
Protein Sulfenation as a Redox Sensor: Proteomics Studies Using a Novel Biotinylated Dimedone Analogue.
R. L. Charles, E. Schroder, G. May, P. Free, P. R. J. Gaffney, R. Wait, S. Begum, R. J. Heads, and P. Eaton (2007)
Mol. Cell. Proteomics 6, 1473-1484
   Abstract »    Full Text »    PDF »
Role of p53 in antioxidant defense of HPV-positive cervical carcinoma cells following H2O2 exposure.
B. Ding, S. G. Chi, S. H. Kim, S. Kang, J. H. Cho, D. S. Kim, and N. H. Cho (2007)
J. Cell Sci. 120, 2284-2294
   Abstract »    Full Text »    PDF »
The Peroxiredoxin Tpx1 Is Essential as a H2O2 Scavenger during Aerobic Growth in Fission Yeast.
M. Jara, A. P. Vivancos, I. A. Calvo, A. Moldon, M. Sanso, and E. Hidalgo (2007)
Mol. Biol. Cell 18, 2288-2295
   Abstract »    Full Text »    PDF »
A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR.
J.-W. Lee, S. Soonsanga, and J. D. Helmann (2007)
PNAS 104, 8743-8748
   Abstract »    Full Text »    PDF »
Repression of Sestrin Family Genes Contributes to Oncogenic Ras-Induced Reactive Oxygen Species Up-regulation and Genetic Instability.
P. B. Kopnin, L. S. Agapova, B. P. Kopnin, and P. M. Chumakov (2007)
Cancer Res. 67, 4671-4678
   Abstract »    Full Text »    PDF »
Differential Regulation of Foxo3a Target Genes in Erythropoiesis.
W. J. Bakker, T. B. van Dijk, M. Parren-van Amelsvoort, A. Kolbus, K. Yamamoto, P. Steinlein, R. G. W. Verhaak, T. W. Mak, H. Beug, B. Lowenberg, et al. (2007)
Mol. Cell. Biol. 27, 3839-3854
   Abstract »    Full Text »    PDF »
Modulation of DNA binding properties of CCAAT/enhancer binding protein epsilon by heterodimer formation and interactions with NFkappaB pathway.
A. M. Chumakov, A. Silla, E. A. Williamson, and H. P. Koeffler (2007)
Blood 109, 4209-4219
   Abstract »    Full Text »    PDF »
Dangerous habits of a security guard: the two faces of p53 as a drug target.
A. V. Gudkov and E. A. Komarova (2007)
Hum. Mol. Genet. 16, R67-R72
   Abstract »    Full Text »    PDF »
Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C.
G. Monteiro, B. B. Horta, D. C. Pimenta, O. Augusto, and L. E. S. Netto (2007)
PNAS 104, 4886-4891
   Abstract »    Full Text »    PDF »
Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes.
J. Ehrchen, L. Steinmuller, K. Barczyk, K. Tenbrock, W. Nacken, M. Eisenacher, U. Nordhues, C. Sorg, C. Sunderkotter, and J. Roth (2007)
Blood 109, 1265-1274
   Abstract »    Full Text »    PDF »
BCL2 Is a Downstream Effector of MIZ-1 Essential for Blocking c-MYC-induced Apoptosis.
J. H. Patel and S. B. McMahon (2007)
J. Biol. Chem. 282, 5-13
   Abstract »    Full Text »    PDF »
p53 Suppresses the Nrf2-dependent Transcription of Antioxidant Response Genes.
R. Faraonio, P. Vergara, D. Di Marzo, M. G. Pierantoni, M. Napolitano, T. Russo, and F. Cimino (2006)
J. Biol. Chem. 281, 39776-39784
   Abstract »    Full Text »    PDF »
Outcomes of p53 activation - spoilt for choice.
K. H. Vousden (2006)
J. Cell Sci. 119, 5015-5020
   Abstract »    Full Text »    PDF »
Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery.
T. J. Phalen, K. Weirather, P. B. Deming, V. Anathy, A. K. Howe, A. van der Vliet, T. J. Jonsson, L. B. Poole, and N. H. Heintz (2006)
J. Cell Biol. 175, 779-789
   Abstract »    Full Text »    PDF »
Gene expression profiling of bovine skeletal muscle in response to and during recovery from chronic and severe undernutrition.
S. A. Lehnert, K. A. Byrne, A. Reverter, G. S. Nattrass, P. L. Greenwood, Y. H. Wang, N. J. Hudson, and G. S. Harper (2006)
J Anim Sci 84, 3239-3250
   Abstract »    Full Text »    PDF »
Sesn1 is a novel gene for left-right asymmetry and mediating nodal signaling.
H. Peeters, M. L. Voz, K. Verschueren, B. De Cat, H. Pendeville, B. Thienpont, A. Schellens, J. W. Belmont, G. David, W. J.M. Van De Ven, et al. (2006)
Hum. Mol. Genet. 15, 3369-3377
   Abstract »    Full Text »    PDF »
Dynamic redox control of NF-{kappa}B through glutaredoxin-regulated S-glutathionylation of inhibitory {kappa}B kinase beta.
N. L. Reynaert, A. van der Vliet, A. S. Guala, T. McGovern, M. Hristova, C. Pantano, N. H. Heintz, J. Heim, Y.-S. Ho, D. E. Matthews, et al. (2006)
PNAS 103, 13086-13091
   Abstract »    Full Text »    PDF »
Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation.
A. K. Mal (2006)
EMBO J. 25, 3323-3334
   Abstract »    Full Text »    PDF »
A Distinct p53 Protein Isoform Signature Reflects the Onset of Induction Chemotherapy for Acute Myeloid Leukemia..
N. Anensen, A. M. Oyan, J.-C. Bourdon, K. H. Kalland, O. Bruserud, and B. T. Gjertsen (2006)
Clin. Cancer Res. 12, 3985-3992
   Abstract »    Full Text »    PDF »
Redox Balance Mechanisms in Schistosoma mansoni Rely on Peroxiredoxins and Albumin and Implicate Peroxiredoxins as Novel Drug Targets.
A. A. Sayed, S. K. Cook, and D. L. Williams (2006)
J. Biol. Chem. 281, 17001-17010
   Abstract »    Full Text »    PDF »
The Octamer Binding Transcription Factor Oct-1 Is a Stress Sensor.
D. Tantin, C. Schild-Poulter, V. Wang, R. J.G. Hache, and P. A. Sharp (2005)
Cancer Res. 65, 10750-10758
   Abstract »    Full Text »    PDF »
Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response.
J. T. Marques, D. Rebouillat, C. V. Ramana, J. Murakami, J. E. Hill, A. Gudkov, R. H. Silverman, G. R. Stark, and B. R. G. Williams (2005)
J. Virol. 79, 11105-11114
   Abstract »    Full Text »    PDF »
Oxidative Stress-dependent Structural and Functional Switching of a Human 2-Cys Peroxiredoxin Isotype II That Enhances HeLa Cell Resistance to H2O2-induced Cell Death.
J. C. Moon, Y.-S. Hah, W. Y. Kim, B. G. Jung, H. H. Jang, J. R. Lee, S. Y. Kim, Y. M. Lee, M. G. Jeon, C. W. Kim, et al. (2005)
J. Biol. Chem. 280, 28775-28784
   Abstract »    Full Text »    PDF »
A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
A. P. Vivancos, E. A. Castillo, B. Biteau, C. Nicot, J. Ayte, M. B. Toledano, and E. Hidalgo (2005)
PNAS 102, 8875-8880
   Abstract »    Full Text »    PDF »
Oxidation of a Eukaryotic 2-Cys Peroxiredoxin Is a Molecular Switch Controlling the Transcriptional Response to Increasing Levels of Hydrogen Peroxide.
S. M. Bozonet, V. J. Findlay, A. M. Day, J. Cameron, E. A. Veal, and B. A. Morgan (2005)
J. Biol. Chem. 280, 23319-23327
   Abstract »    Full Text »    PDF »
Induction of p53 Up-Regulated Modulator of Apoptosis Messenger RNA by Chemotherapeutic Treatment of Locally Advanced Breast Cancer.
R. Middelburg, R. R. de Haas, H. Dekker, R. M. Kerkhoven, P. R. Pohlmann, A. Fuentes-Alburo, A. Mohar, H. M. Pinedo, and J. Lankelma (2005)
Clin. Cancer Res. 11, 1863-1869
   Abstract »    Full Text »    PDF »
Reduction of Cysteine Sulfinic Acid by Sulfiredoxin Is Specific to 2-Cys Peroxiredoxins.
H. A. Woo, W. Jeong, T.-S. Chang, K. J. Park, S. J. Park, J. S. Yang, and S. G. Rhee (2005)
J. Biol. Chem. 280, 3125-3128
   Abstract »    Full Text »    PDF »
Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
A. T. Saurin, H. Neubert, J. P. Brennan, and P. Eaton (2004)
PNAS 101, 17982-17987
   Abstract »    Full Text »    PDF »
Characterization of Mammalian Sulfiredoxin and Its Reactivation of Hyperoxidized Peroxiredoxin through Reduction of Cysteine Sulfinic Acid in the Active Site to Cysteine.
T.-S. Chang, W. Jeong, H. A. Woo, S. M. Lee, S. Park, and S. G. Rhee (2004)
J. Biol. Chem. 279, 50994-51001
   Abstract »    Full Text »    PDF »
Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors.
J. Kwon, S.-R. Lee, K.-S. Yang, Y. Ahn, Y. J. Kim, E. R. Stadtman, and S. G. Rhee (2004)
PNAS 101, 16419-16424
   Abstract »    Full Text »    PDF »
Role of Oxidative Modifications in Atherosclerosis.
R. Stocker and J. F. Keaney Jr. (2004)
Physiol Rev 84, 1381-1478
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882