Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 304 (5676): 1494-1497

Copyright © 2004 by the American Association for the Advancement of Science

Stomatal Development and Pattern Controlled by a MAPKK Kinase

Dominique C. Bergmann,1 Wolfgang Lukowitz,1* Chris R. Somerville1,2{dagger}

Abstract: Stomata are epidermal structures that modulate gas exchange between a plant and its environment. During development, stomata are specified and positioned nonrandomly by the integration of asymmetric cell divisions and intercellular signaling. The Arabidopsis mitogen-activated protein kinase kinase kinase gene, YODA, acts as part of a molecular switch controlling cell identities in the epidermis. Null mutations in YODA lead to excess stomata, whereas constitutive activation of YODA eliminated stomata. Transcriptome analysis of seedlings with altered YODA activity was used to identify potential stomatal regulatory genes. A putative transcription factor from this set was shown to regulate the developmental behavior of stomatal precursors.

1 Carnegie Institution, Department of Plant Biology, Stanford University, Stanford, CA 94305, USA.
2 Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.

Back to Top

* Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

{dagger} To whom correspondence should be addressed. E-mail: crs{at}stanford.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Symmetry, asymmetry, and the cell cycle in plants: known knowns and some known unknowns.
T. Munoz-Nortes, D. Wilson-Sanchez, H. Candela, and J. L. Micol (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
S. M. Bemis, J. S. Lee, E. D. Shpak, and K. U. Torii (2013)
J. Exp. Bot. 64, 5323-5333
   Abstract »    Full Text »    PDF »
Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens.
M.-T. O'Donoghue, C. Chater, S. Wallace, J. E. Gray, D. J. Beerling, and A. J. Fleming (2013)
J. Exp. Bot. 64, 3567-3581
   Abstract »    Full Text »    PDF »
Differential Effects of the Peptides Stomagen, EPF1 and EPF2 on Activation of MAP Kinase MPK6 and the SPCH Protein Level.
P. K. Jewaria, T. Hara, H. Tanaka, T. Kondo, S. Betsuyaku, S. Sawa, Y. Sakagami, S. Aimoto, and T. Kakimoto (2013)
Plant Cell Physiol. 54, 1253-1262
   Abstract »    Full Text »    PDF »
ERECTA Family Genes Regulate Auxin Transport in the Shoot Apical Meristem and Forming Leaf Primordia.
M.-K. Chen, R. L. Wilson, K. Palme, F. A. Ditengou, and E. D. Shpak (2013)
Plant Physiology 162, 1978-1991
   Abstract »    Full Text »    PDF »
What Causes Opposing Actions of Brassinosteroids on Stomatal Development?.
L. Serna (2013)
Plant Physiology 162, 3-8
   Full Text »    PDF »
Brassinosteroid-regulated GSK3/Shaggy-like Kinases Phosphorylate Mitogen-activated Protein (MAP) Kinase Kinases, Which Control Stomata Development in Arabidopsis thaliana.
M. Khan, W. Rozhon, J. Bigeard, D. Pflieger, S. Husar, A. Pitzschke, M. Teige, C. Jonak, H. Hirt, and B. Poppenberger (2013)
J. Biol. Chem. 288, 7519-7527
   Abstract »    Full Text »    PDF »
A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates Arabidopsis Inflorescence Architecture by Promoting Localized Cell Proliferation.
X. Meng, H. Wang, Y. He, Y. Liu, J. C. Walker, K. U. Torii, and S. Zhang (2012)
PLANT CELL 24, 4948-4960
   Abstract »    Full Text »    PDF »
Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication.
O. S. Lau and D. C. Bergmann (2012)
Development 139, 3683-3692
   Abstract »    Full Text »    PDF »
Drought induces alterations in the stomatal development program in Populus.
E. T. Hamanishi, B. R. Thomas, and M. M. Campbell (2012)
J. Exp. Bot. 63, 4959-4971
   Abstract »    Full Text »    PDF »
GSK3-Like Kinases Integrate Brassinosteroid Signaling and Stomatal Development.
S. A. Casson and A. M. Hetherington (2012)
Science Signaling 5, pe30
   Abstract »    Full Text »    PDF »
Regulation of Plasmodesmatal Permeability and Stomatal Patterning by the Glycosyltransferase-Like Protein KOBITO1.
D. Kong, R. Karve, A. Willet, M.-K. Chen, J. Oden, and E. D. Shpak (2012)
Plant Physiology 159, 156-168
   Abstract »    Full Text »    PDF »
Major transitions in the evolution of early land plants: a bryological perspective.
R. Ligrone, J. G. Duckett, and K. S. Renzaglia (2012)
Ann. Bot. 109, 851-871
   Abstract »    Full Text »    PDF »
A Tale of Two Systems: Peptide Ligand-Receptor Pairs in Plant Development.
J. S. Lee and K. U. Torii (2012)
Cold Spring Harb Symp Quant Biol 77, 83-89
   Abstract »    Full Text »    PDF »
On Fate and Flexibility in Stomatal Development.
D. L. Wengier and D. C. Bergmann (2012)
Cold Spring Harb Symp Quant Biol 77, 53-62
   Abstract »    Full Text »    PDF »
Small RNA-Regulated Networks and the Evolution of Novel Structures in Plants.
Y. Plavskin and M. C. P. Timmermans (2012)
Cold Spring Harb Symp Quant Biol 77, 221-233
   Abstract »    Full Text »    PDF »
Increased Leaf Angle1, a Raf-Like MAPKKK That Interacts with a Nuclear Protein Family, Regulates Mechanical Tissue Formation in the Lamina Joint of Rice.
J. Ning, B. Zhang, N. Wang, Y. Zhou, and L. Xiong (2011)
PLANT CELL 23, 4334-4347
   Abstract »    Full Text »    PDF »
Molecular Profiling of Stomatal Meristemoids Reveals New Component of Asymmetric Cell Division and Commonalities among Stem Cell Populations in Arabidopsis.
L. J. Pillitteri, K. M. Peterson, R. J. Horst, and K. U. Torii (2011)
PLANT CELL 23, 3260-3275
   Abstract »    Full Text »    PDF »
Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata.
M. Heinrich, I. T. Baldwin, and J. Wu (2011)
J. Exp. Bot. 62, 4355-4365
   Abstract »    Full Text »    PDF »
Differentiation of Arabidopsis Guard Cells: Analysis of the Networks Incorporating the Basic Helix-Loop-Helix Transcription Factor, FAMA.
C. Hachez, K. Ohashi-Ito, J. Dong, and D. C. Bergmann (2011)
Plant Physiology 155, 1458-1472
   Abstract »    Full Text »    PDF »
Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid-Mediated Effect on Stomatal Aperture.
W. L. Araujo, A. Nunes-Nesi, S. Osorio, B. Usadel, D. Fuentes, R. Nagy, I. Balbo, M. Lehmann, C. Studart-Witkowski, T. Tohge, et al. (2011)
PLANT CELL 23, 600-627
   Abstract »    Full Text »    PDF »
The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1.
C. Y. Yoo, H. E. Pence, J. B. Jin, K. Miura, M. J. Gosney, P. M. Hasegawa, and M. V. Mickelbart (2010)
PLANT CELL 22, 4128-4141
   Abstract »    Full Text »    PDF »
Plant Immunity Triggered by Microbial Molecular Signatures.
J. Zhang and J.-M. Zhou (2010)
Mol Plant 3, 783-793
   Abstract »    Full Text »    PDF »
Hydrogen Peroxide-Mediated Activation of MAP Kinase 6 Modulates Nitric Oxide Biosynthesis and Signal Transduction in Arabidopsis.
P. Wang, Y. Du, Y. Li, D. Ren, and C.-P. Song (2010)
PLANT CELL 22, 2981-2998
   Abstract »    Full Text »    PDF »
In Silico Analysis Reveals 75 Members of Mitogen-Activated Protein Kinase Kinase Kinase Gene Family in Rice.
K. P. Rao, T. Richa, K. Kumar, B. Raghuram, and A. K. Sinha (2010)
DNA Res 17, 139-153
   Abstract »    Full Text »    PDF »
A Pseudomonas syringae ADP-Ribosyltransferase Inhibits Arabidopsis Mitogen-Activated Protein Kinase Kinases.
Y. Wang, J. Li, S. Hou, X. Wang, Y. Li, D. Ren, S. Chen, X. Tang, and J.-M. Zhou (2010)
PLANT CELL 22, 2033-2044
   Abstract »    Full Text »    PDF »
Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8).
J. M. Guseman, J. S. Lee, N. L. Bogenschutz, K. M. Peterson, R. E. Virata, B. Xie, M. M. Kanaoka, Z. Hong, and K. U. Torii (2010)
Development 137, 1731-1741
   Abstract »    Full Text »    PDF »
Regional specification of stomatal production by the putative ligand CHALLAH.
E. B. Abrash and D. C. Bergmann (2010)
Development 137, 447-455
   Abstract »    Full Text »    PDF »
Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development.
K. M. Peterson, A. L. Rychel, and K. U. Torii (2010)
PLANT CELL 22, 296-306
   Abstract »    Full Text »    PDF »
A Raf-Like MAPKKK Gene DSM1 Mediates Drought Resistance through Reactive Oxygen Species Scavenging in Rice.
J. Ning, X. Li, L. M. Hicks, and L. Xiong (2010)
Plant Physiology 152, 876-890
   Abstract »    Full Text »    PDF »
MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling.
F. Jammes, C. Song, D. Shin, S. Munemasa, K. Takeda, D. Gu, D. Cho, S. Lee, R. Giordo, S. Sritubtim, et al. (2009)
PNAS 106, 20520-20525
   Abstract »    Full Text »    PDF »
Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves.
D. J. Beerling, A. Fox, and C. W. Anderson (2009)
Am J Sci 309, 775-787
   Abstract »    Full Text »    PDF »
Novel and Expanded Roles for MAPK Signaling in Arabidopsis Stomatal Cell Fate Revealed by Cell Type-Specific Manipulations.
G. R. Lampard, W. Lukowitz, B. E. Ellis, and D. C. Bergmann (2009)
PLANT CELL 21, 3506-3517
   Abstract »    Full Text »    PDF »
Unraveling the MAPK Signaling Network in Stomatal Development.
N. A. Eckardt (2009)
PLANT CELL 21, 3413
   Full Text »    PDF »
Symmetry Breaking in Plants: Molecular Mechanisms Regulating Asymmetric Cell Divisions in Arabidopsis.
J. J. Petricka, J. M. Van Norman, and P. N. Benfey (2009)
Cold Spring Harb Perspect Biol 1, a000497
   Abstract »    Full Text »    PDF »
Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis.
C.-Y. Kang, H.-L. Lian, F.-F. Wang, J.-R. Huang, and H.-Q. Yang (2009)
PLANT CELL 21, 2624-2641
   Abstract »    Full Text »    PDF »
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
P. J. Franks and D. J. Beerling (2009)
PNAS 106, 10343-10347
   Abstract »    Full Text »    PDF »
Epidermal Cell Density is Autoregulated via a Secretory Peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves.
K. Hara, T. Yokoo, R. Kajita, T. Onishi, S. Yahata, K. M. Peterson, K. U. Torii, and T. Kakimoto (2009)
Plant Cell Physiol. 50, 1019-1031
   Abstract »    Full Text »    PDF »
Emerging Parallels between Stomatal and Muscle Cell Lineages.
L. Serna (2009)
Plant Physiology 149, 1625-1631
   Full Text »    PDF »
Paternal Control of Embryonic Patterning in Arabidopsis thaliana.
M. Bayer, T. Nawy, C. Giglione, M. Galli, T. Meinnel, and W. Lukowitz (2009)
Science 323, 1485-1488
   Abstract »    Full Text »    PDF »
Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling.
A. Pitzschke and H. Hirt (2009)
Plant Physiology 149, 606-615
   Full Text »    PDF »
PLANT SCIENCE: Pores in Place.
F. D. Sack and J.-G. Chen (2009)
Science 323, 592-593
   Abstract »    Full Text »    PDF »
Intercellular Peptide Signals Regulate Plant Meristematic Cell Fate Decisions.
J. E. Gray, S. Casson, and L. Hunt (2008)
Science Signaling 1, pe53
   Abstract »    Full Text »    PDF »
Arabidopsis Stomatal Initiation Is Controlled by MAPK-Mediated Regulation of the bHLH SPEECHLESS.
G. R. Lampard, C. A. MacAlister, and D. C. Bergmann (2008)
Science 322, 1113-1116
   Abstract »    Full Text »    PDF »
Regulation of Arabidopsis Early Anther Development by the Mitogen-Activated Protein Kinases, MPK3 and MPK6, and the ERECTA and Related Receptor-Like Kinases.
C. L.H. Hord, Y.-J. Sun, L. J. Pillitteri, K. U. Torii, H. Wang, S. Zhang, and H. Ma (2008)
Mol Plant 1, 645-658
   Abstract »    Full Text »    PDF »
SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation.
M. M. Kanaoka, L. J. Pillitteri, H. Fujii, Y. Yoshida, N. L. Bogenschutz, J. Takabayashi, J.-K. Zhu, and K. U. Torii (2008)
PLANT CELL 20, 1775-1785
   Abstract »    Full Text »    PDF »
The bHLH Protein, MUTE, Controls Differentiation of Stomata and the Hydathode Pore in Arabidopsis.
L. J. Pillitteri, N. L. Bogenschutz, and K. U. Torii (2008)
Plant Cell Physiol. 49, 934-943
   Abstract »    Full Text »    PDF »
Haplo-Insufficiency of MPK3 in MPK6 Mutant Background Uncovers a Novel Function of These Two MAPKs in Arabidopsis Ovule Development.
H. Wang, Y. Liu, K. Bruffett, J. Lee, G. Hause, J. C. Walker, and S. Zhang (2008)
PLANT CELL 20, 602-613
   Abstract »    Full Text »    PDF »
MicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis.
C. Kutter, H. Schob, M. Stadler, F. Meins Jr., and A. Si-Ammour (2007)
PLANT CELL 19, 2417-2429
   Abstract »    Full Text »    PDF »
The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule.
K. Hara, R. Kajita, K. U. Torii, D. C. Bergmann, and T. Kakimoto (2007)
Genes & Dev. 21, 1720-1725
   Abstract »    Full Text »    PDF »
Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development.
S. M. Bush and P. J. Krysan (2007)
J. Exp. Bot. 58, 2181-2191
   Abstract »    Full Text »    PDF »
The Arabidopsis D-Type Cyclin CYCD4 Controls Cell Division in the Stomatal Lineage of the Hypocotyl Epidermis.
A. Kono, C. Umeda-Hara, S. Adachi, N. Nagata, M. Konomi, T. Nakagawa, H. Uchimiya, and M. Umeda (2007)
PLANT CELL 19, 1265-1277
   Abstract »    Full Text »    PDF »
Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development.
M. K. Barton (2007)
PLANT CELL 19, 1140-1143
   Full Text »    PDF »
Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis.
H. Wang, N. Ngwenyama, Y. Liu, J. C. Walker, and S. Zhang (2007)
PLANT CELL 19, 63-73
   Abstract »    Full Text »    PDF »
Loss of ovule identity induced by overexpression of the fertilization-related kinase 2 (ScFRK2), a MAPKKK from Solanum chacoense.
M. Gray-Mitsumune, M. O'Brien, C. Bertrand, F. Tebbji, A. Nantel, and D. P. Matton (2006)
J. Exp. Bot. 57, 4171-4187
   Abstract »    Full Text »    PDF »
Arabidopsis FAMA Controls the Final Proliferation/Differentiation Switch during Stomatal Development.
K. Ohashi-Ito and D. C. Bergmann (2006)
PLANT CELL 18, 2493-2505
   Abstract »    Full Text »    PDF »
Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana.
Z. Chen, H. Zhang, D. Jablonowski, X. Zhou, X. Ren, X. Hong, R. Schaffrath, J.-K. Zhu, and Z. Gong (2006)
Mol. Cell. Biol. 26, 6902-6912
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants.
A. Pitzschke and H. Hirt (2006)
Plant Physiology 141, 351-356
   Full Text »    PDF »
A Transcriptome-Based Characterization of Habituation in Plant Tissue Culture.
M. S. Pischke, E. L. Huttlin, A. D. Hegeman, and M. R. Sussman (2006)
Plant Physiology 140, 1255-1278
   Abstract »    Full Text »    PDF »
Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.
M. Wentworth, E. H. Murchie, J. E. Gray, D. Villegas, C. Pastenes, M. Pinto, and P. Horton (2006)
J. Exp. Bot. 57, 699-709
   Abstract »    Full Text »    PDF »
Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis.
Y. Dai, H. Wang, B. Li, J. Huang, X. Liu, Y. Zhou, Z. Mou, and J. Li (2006)
PLANT CELL 18, 308-320
   Abstract »    Full Text »    PDF »
Microtubule arrays and Arabidopsis stomatal development.
J. R. Lucas, J. A. Nadeau, and F. D. Sack (2006)
J. Exp. Bot. 57, 71-79
   Abstract »    Full Text »    PDF »
Systemic signalling of environmental cues in Arabidopsis leaves.
S. A. Coupe, B. G. Palmer, J. A. Lake, S. A. Overy, K. Oxborough, F. I. Woodward, J. E. Gray, and W. P. Quick (2006)
J. Exp. Bot. 57, 329-341
   Abstract »    Full Text »    PDF »
A Mitogen-activated Protein Kinase NtMPK4 Activated by SIPKK is Required for Jasmonic Acid Signaling and Involved in Ozone Tolerance via Stomatal Movement in Tobacco.
K. Gomi, D. Ogawa, S. Katou, H. Kamada, N. Nakajima, H. Saji, T. Soyano, M. Sasabe, Y. Machida, I. Mitsuhara, et al. (2005)
Plant Cell Physiol. 46, 1902-1914
   Abstract »    Full Text »    PDF »
The Arabidopsis R2R3 MYB Proteins FOUR LIPS and MYB88 Restrict Divisions Late in the Stomatal Cell Lineage.
L. B. Lai, J. A. Nadeau, J. Lucas, E.-K. Lee, T. Nakagawa, L. Zhao, M. Geisler, and F. D. Sack (2005)
PLANT CELL 17, 2754-2767
   Abstract »    Full Text »    PDF »
Stomatal Patterning and Differentiation by Synergistic Interactions of Receptor Kinases.
E. D. Shpak, J. M. McAbee, L. J. Pillitteri, and K. U. Torii (2005)
Science 309, 290-293
   Abstract »    Full Text »    PDF »
New insights into plant development in New England.
L. Dolan and J. A. Langdale (2004)
Development 131, 5215-5220
   Abstract »    Full Text »    PDF »
PLANT SCIENCES: Yoda Would Be Proud: Valves for Land Plants.
F. D. Sack (2004)
Science 304, 1461-1462
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882