Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 304 (5676): 1503-1506

Copyright © 2004 by the American Association for the Advancement of Science

Roles of the Two Drosophila CRYPTOCHROME Structural Domains in Circadian Photoreception

Ania Busza,1* Myai Emery-Le,1* Michael Rosbash,2 Patrick Emery1{dagger}

Abstract: CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM interaction is transient. A novel cry mutation (crym) reveals that CRY's photolyase homology domain is sufficient for light detection and phototransduction, whereas the carboxyl-terminal domain regulates CRY stability, CRY-TIM interaction, and circadian photosensitivity. This contrasts with the function of Arabidopsis CRY domains and demonstrates that insect and plant cryptochromes use different mechanisms.

1 Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
2 Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: patrick.emery{at}

Cryptochrome expression in the eye of migratory birds depends on their migratory status.
L. Fusani, C. Bertolucci, E. Frigato, and A. Foa (2014)
J. Exp. Biol. 217, 918-923
   Abstract »    Full Text »    PDF »
Flavin reduction activates Drosophila cryptochrome.
A. T. Vaidya, D. Top, C. C. Manahan, J. M. Tokuda, S. Zhang, L. Pollack, M. W. Young, and B. R. Crane (2013)
PNAS 110, 20455-20460
   Abstract »    Full Text »    PDF »
Accelerated Degradation of perS Protein Provides Insight into Light-Mediated Phase Shifting.
Y. Li and M. Rosbash (2013)
J Biol Rhythms 28, 171-182
   Abstract »    Full Text »    PDF »
A Role for Drosophila ATX2 in Activation of PER Translation and Circadian Behavior.
Y. Zhang, J. Ling, C. Yuan, R. Dubruille, and P. Emery (2013)
Science 340, 879-882
   Abstract »    Full Text »    PDF »
Fly cryptochrome and the visual system.
G. Mazzotta, A. Rossi, E. Leonardi, M. Mason, C. Bertolucci, L. Caccin, B. Spolaore, A. J. M. Martin, M. Schlichting, R. Grebler, et al. (2013)
PNAS 110, 6163-6168
   Abstract »    Full Text »    PDF »
Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex.
N. Ozturk, S. J. VanVickle-Chavez, L. Akileswaran, R. N. Van Gelder, and A. Sancar (2013)
PNAS 110, 4980-4985
   Abstract »    Full Text »    PDF »
Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology.
X. Sun, E. H. A. Rikkerink, W. T. Jones, and V. N. Uversky (2013)
PLANT CELL 25, 38-55
   Abstract »    Full Text »    PDF »
Light-dependent Structural Change of Chicken Retinal Cryptochrome4.
R. Watari, C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano (2012)
J. Biol. Chem. 287, 42634-42641
   Abstract »    Full Text »    PDF »
KAYAK-{alpha} Modulates Circadian Transcriptional Feedback Loops in Drosophila Pacemaker Neurons.
J. Ling, R. Dubruille, and P. Emery (2012)
J. Neurosci. 32, 16959-16970
   Abstract »    Full Text »    PDF »
Phase-Shifting the Fruit Fly Clock without Cryptochrome.
C. Kistenpfennig, J. Hirsh, T. Yoshii, and C. Helfrich-Forster (2012)
J Biol Rhythms 27, 117-125
   Abstract »    Full Text »    PDF »
Effect of Circadian Clock Gene Mutations on Nonvisual Photoreception in the Mouse.
L. Owens, E. Buhr, D. C. Tu, T. L. Lamprecht, J. Lee, and R. N. Van Gelder (2012)
Invest. Ophthalmol. Vis. Sci. 53, 454-460
   Abstract »    Full Text »    PDF »
The Circadian Clock, Light, and Cryptochrome Regulate Feeding and Metabolism in Drosophila.
D. J. Seay and C. S. Thummel (2011)
J Biol Rhythms 26, 497-506
   Abstract »    PDF »
Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression.
C. Fankhauser and R. Ulm (2011)
Genes & Dev. 25, 1004-1009
   Abstract »    Full Text »    PDF »
CRYPTOCHROME Is a Blue-Light Sensor That Regulates Neuronal Firing Rate.
K. J. Fogle, K. G. Parson, N. A. Dahm, and T. C. Holmes (2011)
Science 331, 1409-1413
   Abstract »    Full Text »    PDF »
Reaction mechanism of Drosophila cryptochrome.
N. Ozturk, C. P. Selby, Y. Annayev, D. Zhong, and A. Sancar (2011)
PNAS 108, 516-521
   Abstract »    Full Text »    PDF »
Cryptochrome-Positive and -Negative Clock Neurons in Drosophila Entrain Differentially to Light and Temperature.
T. Yoshii, C. Hermann, and C. Helfrich-Forster (2010)
J Biol Rhythms 25, 387-398
   Abstract »    PDF »
Synergic Entrainment of Drosophila's Circadian Clock by Light and Temperature.
T. Yoshii, S. Vanin, R. Costa, and C. Helfrich-Forster (2009)
J Biol Rhythms 24, 452-464
   Abstract »    PDF »
Generation of a Novel Allelic Series of Cryptochrome Mutants via Mutagenesis Reveals Residues Involved in Protein-Protein Interaction and CRY2-Specific Repression.
E. V. McCarthy, J. E. Baggs, J. M. Geskes, J. B. Hogenesch, and C. B. Green (2009)
Mol. Cell. Biol. 29, 5465-5476
   Abstract »    Full Text »    PDF »
The Clock Gene period Plays an Essential Role in Photoperiodic Control of Nymphal Development in the Cricket Modicogryllus siamensis.
T. Sakamoto, O. Uryu, and K. Tomioka (2009)
J Biol Rhythms 24, 379-390
   Abstract »    PDF »
Does the Morning and Evening Oscillator Model Fit Better for Flies or Mice?.
C. Helfrich-Forster (2009)
J Biol Rhythms 24, 259-270
   Abstract »    PDF »
TIMELESS Is an Important Mediator of CK2 Effects on Circadian Clock Function In Vivo.
R.-A. Meissner, V. L. Kilman, J.-M. Lin, and R. Allada (2008)
J. Neurosci. 28, 9732-9740
   Abstract »    Full Text »    PDF »
The Blue-Light Photoreceptor CRYPTOCHROME Is Expressed in a Subset of Circadian Oscillator Neurons in the Drosophila CNS.
J. Benito, J. H. Houl, G. W. Roman, and P. E. Hardin (2008)
J Biol Rhythms 23, 296-307
   Abstract »    PDF »
Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster.
C. Ito, S. G. Goto, S. Shiga, K. Tomioka, and H. Numata (2008)
PNAS 105, 8446-8451
   Abstract »    Full Text »    PDF »
Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.
S. Sathyanarayanan, X. Zheng, S. Kumar, C.-H. Chen, D. Chen, B. Hay, and A. Sehgal (2008)
Genes & Dev. 22, 1522-1533
   Abstract »    Full Text »    PDF »
N. Ozturk, S.-H. Song, C. P. Selby, and A. Sancar (2008)
J. Biol. Chem. 283, 3256-3263
   Abstract »    Full Text »    PDF »
Rhythm Defects Caused by Newly Engineered Null Mutations in Drosophila's cryptochrome Gene.
E. Dolezelova, D. Dolezel, and J. C. Hall (2007)
Genetics 177, 329-345
   Abstract »    Full Text »    PDF »
The 2006 Pittendrigh/Aschoff Lecture: New Roles for Old Proteins in the Drosophila Circadian Clock.
P. Meyer and M. W. Young (2007)
J Biol Rhythms 22, 283-290
   Abstract »    PDF »
A Molecular Basis for Natural Selection at the timeless Locus in Drosophila melanogaster.
F. Sandrelli, E. Tauber, M. Pegoraro, G. Mazzotta, P. Cisotto, J. Landskron, R. Stanewsky, A. Piccin, E. Rosato, M. Zordan, et al. (2007)
Science 316, 1898-1900
   Abstract »    Full Text »    PDF »
A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome.
A. Berndt, T. Kottke, H. Breitkreuz, R. Dvorsky, S. Hennig, M. Alexander, and E. Wolf (2007)
J. Biol. Chem. 282, 13011-13021
   Abstract »    Full Text »    PDF »
Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2.
X. Yu, D. Shalitin, X. Liu, M. Maymon, J. Klejnot, H. Yang, J. Lopez, X. Zhao, K. T. Bendehakkalu, and C. Lin (2007)
PNAS 104, 7289-7294
   Abstract »    Full Text »    PDF »
Action Spectrum of Drosophila Cryptochrome.
S. J. VanVickle-Chavez and R. N. Van Gelder (2007)
J. Biol. Chem. 282, 10561-10566
   Abstract »    Full Text »    PDF »
Induction of Drosophila Behavioral and Molecular Circadian Rhythms by Temperature Steps in Constant Light.
T. Yoshii, K. Fujii, and K. Tomioka (2007)
J Biol Rhythms 22, 103-114
   Abstract »    PDF »
Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States.
J.-P. Bouly, E. Schleicher, M. Dionisio-Sese, F. Vandenbussche, D. Van Der Straeten, N. Bakrim, S. Meier, A. Batschauer, P. Galland, R. Bittl, et al. (2007)
J. Biol. Chem. 282, 9383-9391
   Abstract »    Full Text »    PDF »
Structure and Function of Animal Cryptochromes.
N. Ozturk, S.-H. Song, S. Ozgur, C. P. Selby, L. Morrison, C. Partch, D. Zhong, and A. Sancar (2007)
Cold Spring Harb Symp Quant Biol 72, 119-131
   Abstract »    PDF »
Structure Function Analysis of Mammalian Cryptochromes.
F. Tamanini, I. Chaves, M. I. Bajek, and G. T. J. van der Horst (2007)
Cold Spring Harb Symp Quant Biol 72, 133-139
   Abstract »    PDF »
Principles and Problems Revolving Round Rhythm-related Genetic Variants.
J. C. Hall, D. C. Chang, and E. Dolezelova (2007)
Cold Spring Harb Symp Quant Biol 72, 215-232
   Abstract »    PDF »
Synchronization of the Drosophila Circadian Clock by Temperature Cycles.
F. T. Glaser and R. Stanewsky (2007)
Cold Spring Harb Symp Quant Biol 72, 233-242
   Abstract »    PDF »
Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
N. Peschel, S. Veleri, and R. Stanewsky (2006)
PNAS 103, 17313-17318
   Abstract »    Full Text »    PDF »
Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock.
E. B. Rubin, Y. Shemesh, M. Cohen, S. Elgavish, H. M. Robertson, and G. Bloch (2006)
Genome Res. 16, 1352-1365
   Abstract »    Full Text »    PDF »
Ectopic CRYPTOCHROME Renders TIM Light Sensitive in the Drosophila Ovary.
B. L. Rush, A. Murad, P. Emery, and J. M. Giebultowicz (2006)
J Biol Rhythms 21, 272-278
   Abstract »    PDF »
JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS..
K. Koh, X. Zheng, and A. Sehgal (2006)
Science 312, 1809-1812
   Abstract »    Full Text »    PDF »
PDF Cycling in the Dorsal Protocerebrum of the Drosophila Brain Is Not Necessary for Circadian Clock Function.
E. Kula, E. S. Levitan, E. Pyza, and M. Rosbash (2006)
J Biol Rhythms 21, 104-117
   Abstract »    PDF »
Functional Evolution of the Photolyase/Cryptochrome Protein Family: Importance of the C Terminus of Mammalian CRY1 for Circadian Core Oscillator Performance.
I. Chaves, K. Yagita, S. Barnhoorn, H. Okamura, G. T. J. van der Horst, and F. Tamanini (2006)
Mol. Cell. Biol. 26, 1743-1753
   Abstract »    Full Text »    PDF »
Functional Analysis of Circadian Pacemaker Neurons in Drosophila melanogaster.
D. Rieger, O. T. Shafer, K. Tomioka, and C. Helfrich-Forster (2006)
J. Neurosci. 26, 2531-2543
   Abstract »    Full Text »    PDF »
Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
B. H. Collins, S. Dissel, E. Gaten, E. Rosato, and C. P. Kyriacou (2005)
PNAS 102, 19021-19026
   Abstract »    Full Text »    PDF »
N-Terminal Domain-Mediated Homodimerization Is Required for Photoreceptor Activity of Arabidopsis CRYPTOCHROME 1.
Y. Sang, Q.-H. Li, V. Rubio, Y.-C. Zhang, J. Mao, X.-W. Deng, and H.-Q. Yang (2005)
PLANT CELL 17, 1569-1584
   Abstract »    Full Text »    PDF »
The Novel Drosophila timblind Mutation Affects Behavioral Rhythms but Not Periodic Eclosion.
C. Wulbeck, G. Szabo, O. T. Shafer, C. Helfrich-Forster, and R. Stanewsky (2005)
Genetics 169, 751-766
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882