Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 304 (5677): 1644-1647

Copyright © 2004 by the American Association for the Advancement of Science

Phospholipid Metabolism Regulated by a Transcription Factor Sensing Phosphatidic Acid

C. J. R. Loewen,1 M. L. Gaspar,2 S. A. Jesch,2 C. Delon,3 N. T. Ktistakis,3 S. A. Henry,2 T. P. Levine1*

Abstract: Cells regulate the biophysical properties of their membranes by coordinated synthesis of different classes of lipids. Here, we identified a highly dynamic feedback mechanism by which the budding yeast Saccharomyces cerevisiae can regulate phospholipid biosynthesis. Phosphatidic acid on the endoplasmic reticulum directly bound to the soluble transcriptional repressor Opi1p to maintain it as inactive outside the nucleus. After the addition of the lipid precursor inositol, this phosphatidic acid was rapidly consumed, releasing Opi1p from the endoplasmic reticulum and allowing its nuclear translocation and repression of target genes. Thus, phosphatidic acid appears to be both an essential ubiquitous metabolic intermediate and a signaling lipid.

1 Division of Cell Biology, Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK.
2 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853–2703, USA.
3 Signalling Programme, Babraham Institute, Babraham, Cambridge CB2 4AT, UK.

* To whom correspondence should be addressed. E-mail: tim.levine{at}

An Assembly of Proteins and Lipid Domains Regulates Transport of Phosphatidylserine to Phosphatidylserine Decarboxylase 2 in Saccharomyces cerevisiae.
W. R. Riekhof, W.-I. Wu, J. L. Jones, M. Nikrad, M. M. Chan, C. J. R. Loewen, and D. R. Voelker (2014)
J. Biol. Chem. 289, 5809-5819
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis.
H. Yao, G. Wang, L. Guo, and X. Wang (2013)
PLANT CELL 25, 5030-5042
   Abstract »    Full Text »    PDF »
Activation of Protein Kinase C-Mitogen-activated Protein Kinase Signaling in Response to Inositol Starvation Triggers Sir2p-dependent Telomeric Silencing in Yeast.
S. Lee, M. L. Gaspar, M. A. Aregullin, S. A. Jesch, and S. A. Henry (2013)
J. Biol. Chem. 288, 27861-27871
   Abstract »    Full Text »    PDF »
Phosphatidic Acid (PA) Binds PP2AA1 to Regulate PP2A Activity and PIN1 Polar Localization.
H.-B. Gao, Y.-J. Chu, and H.-W. Xue (2013)
Mol Plant 6, 1692-1702
   Abstract »    Full Text »    PDF »
Regulation of Inositol Metabolism Is Fine-tuned by Inositol Pyrophosphates in Saccharomyces cerevisiae.
C. Ye, W. M. M. S. Bandara, and M. L. Greenberg (2013)
J. Biol. Chem. 288, 24898-24908
   Abstract »    Full Text »    PDF »
cAMP-stimulated transcription of DGK{theta} requires steroidogenic factor 1 and sterol regulatory element binding protein 1.
K. Cai and M. B. Sewer (2013)
J. Lipid Res. 54, 2121-2132
   Abstract »    Full Text »    PDF »
Plasma membrane--endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis.
S. Tavassoli, J. T. Chao, B. P. Young, R. C. Cox, W. A. Prinz, A. I. P. M. de Kroon, and C. J. R. Loewen (2013)
EMBO Rep. 14, 434-440
   Abstract »    Full Text »    PDF »
An auxiliary, membrane-based mechanism for nuclear migration in budding yeast.
M. Kirchenbauer and D. Liakopoulos (2013)
Mol. Biol. Cell 24, 1434-1443
   Abstract »    Full Text »    PDF »
Patatin-Related Phospholipase pPLAIII{delta} Increases Seed Oil Content with Long-Chain Fatty Acids in Arabidopsis.
M. Li, S. C. Bahn, C. Fan, J. Li, T. Phan, M. Ortiz, M. R. Roth, R. Welti, J. Jaworski, and X. Wang (2013)
Plant Physiology 162, 39-51
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis.
S.-C. Kim, L. Guo, and X. Wang (2013)
J. Biol. Chem. 288, 11834-11844
   Abstract »    Full Text »    PDF »
Regulation of Cation Balance in Saccharomyces cerevisiae.
M. S. Cyert and C. C. Philpott (2013)
Genetics 193, 677-713
   Abstract »    Full Text »    PDF »
The Contribution of Systematic Approaches to Characterizing the Proteins and Functions of the Endoplasmic Reticulum.
M. Schuldiner and J. S. Weissman (2013)
Cold Spring Harb Perspect Biol 5, a013284
   Abstract »    Full Text »    PDF »
The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts.
Z. Wang, N. S. Anderson, and C. Benning (2013)
J. Biol. Chem. 288, 4763-4771
   Abstract »    Full Text »    PDF »
Protein Kinase A-mediated Phosphorylation of Pah1p Phosphatidate Phosphatase Functions in Conjunction with the Pho85p-Pho80p and Cdc28p-Cyclin B Kinases to Regulate Lipid Synthesis in Yeast.
W.-M. Su, G.-S. Han, J. Casciano, and G. M. Carman (2012)
J. Biol. Chem. 287, 33364-33376
   Abstract »    Full Text »    PDF »
The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p.
C. H. De Smet, E. Vittone, M. Scherer, M. Houweling, G. Liebisch, J. F. Brouwers, and A. I. P. M. de Kroon (2012)
Mol. Biol. Cell 23, 1146-1156
   Abstract »    Full Text »    PDF »
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae.
S. A. Henry, S. D. Kohlwein, and G. M. Carman (2012)
Genetics 190, 317-349
   Abstract »    Full Text »    PDF »
Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway.
S. Han, S. Bahmanyar, P. Zhang, N. Grishin, K. Oegema, R. Crooke, M. Graham, K. Reue, J. E. Dixon, and J. M. Goodman (2012)
J. Biol. Chem. 287, 3123-3137
   Abstract »    Full Text »    PDF »
Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast.
A. Soto-Cardalda, S. Fakas, F. Pascual, H.-S. Choi, and G. M. Carman (2012)
J. Biol. Chem. 287, 968-977
   Abstract »    Full Text »    PDF »
Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast.
M. J. Hickman, A. A. Petti, O. Ho-Shing, S. J. Silverman, R. S. McIsaac, T. A. Lee, and D. Botstein (2011)
Mol. Biol. Cell 22, 4192-4204
   Abstract »    Full Text »    PDF »
Phosphatidate Phosphatase Activity Plays Key Role in Protection against Fatty Acid-induced Toxicity in Yeast.
S. Fakas, Y. Qiu, J. L. Dixon, G.-S. Han, K. V. Ruggles, J. Garbarino, S. L. Sturley, and G. M. Carman (2011)
J. Biol. Chem. 286, 29074-29085
   Abstract »    Full Text »    PDF »
White Lupin Cluster Root Acclimation to Phosphorus Deficiency and Root Hair Development Involve Unique Glycerophosphodiester Phosphodiesterases.
L. Cheng, B. Bucciarelli, J. Liu, K. Zinn, S. Miller, J. Patton-Vogt, D. Allan, J. Shen, and C. P. Vance (2011)
Plant Physiology 156, 1131-1148
   Abstract »    Full Text »    PDF »
Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor.
J. D. Wilson, S. L. Thompson, and C. Barlowe (2011)
Mol. Biol. Cell 22, 1430-1439
   Abstract »    Full Text »    PDF »
The Intrinsically Disordered Nuclear Localization Signal and Phosphorylation Segments Distinguish the Membrane Affinity of Two Cytidylyltransferase Isoforms.
M. K. Dennis, S. G. Taneva, and R. B. Cornell (2011)
J. Biol. Chem. 286, 12349-12360
   Abstract »    Full Text »    PDF »
Molecular, cellular, and physiological responses to phosphatidic acid formation in plants.
C. Testerink and T. Munnik (2011)
J. Exp. Bot. 62, 2349-2361
   Abstract »    Full Text »    PDF »
M. L. Gaspar, H. F. Hofbauer, S. D. Kohlwein, and S. A. Henry (2011)
J. Biol. Chem. 286, 1696-1708
   Abstract »    Full Text »    PDF »
Phosphorylation of Phosphatidate Phosphatase Regulates Its Membrane Association and Physiological Functions in Saccharomyces cerevisiae: IDENTIFICATION OF SER602, THR723, AND SER744 AS THE SITES PHOSPHORYLATED BY CDC28 (CDK1)-ENCODED CYCLIN-DEPENDENT KINASE.
H.-S. Choi, W.-M. Su, J. M. Morgan, G.-S. Han, Z. Xu, E. Karanasios, S. Siniossoglou, and G. M. Carman (2011)
J. Biol. Chem. 286, 1486-1498
   Abstract »    Full Text »    PDF »
DGK1-encoded Diacylglycerol Kinase Activity Is Required for Phospholipid Synthesis during Growth Resumption from Stationary Phase in Saccharomyces cerevisiae.
S. Fakas, C. Konstantinou, and G. M. Carman (2011)
J. Biol. Chem. 286, 1464-1474
   Abstract »    Full Text »    PDF »
Interruption of Inositol Sphingolipid Synthesis Triggers Stt4p-dependent Protein Kinase C Signaling.
S. A. Jesch, M. L. Gaspar, C. J. Stefan, M. A. Aregullin, and S. A. Henry (2010)
J. Biol. Chem. 285, 41947-41960
   Abstract »    Full Text »    PDF »
Lipid Signaling and Homeostasis: PA- Is Better than PA-H, But What About Those PIPs?.
N. T. Ktistakis (2010)
Science Signaling 3, pe46
   Abstract »    Full Text »    PDF »
Derepression of INO1 Transcription Requires Cooperation between the Ino2p-Ino4p Heterodimer and Cbf1p and Recruitment of the ISW2 Chromatin-Remodeling Complex.
A. Shetty and J. M. Lopes (2010)
Eukaryot. Cell 9, 1845-1855
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Is a pH Biosensor That Links Membrane Biogenesis to Metabolism.
B. P. Young, J. J. H. Shin, R. Orij, J. T. Chao, S. C. Li, X. L. Guan, A. Khong, E. Jan, M. R. Wenk, W. A. Prinz, et al. (2010)
Science 329, 1085-1088
   Abstract »    Full Text »    PDF »
PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in Arabidopsis.
P. J. Eastmond, A.-L. Quettier, J. T. M. Kroon, C. Craddock, N. Adams, and A. R. Slabas (2010)
PLANT CELL 22, 2796-2811
   Abstract »    Full Text »    PDF »
Structural Requirements for VAP-B Oligomerization and Their Implication in Amyotrophic Lateral Sclerosis-associated VAP-B(P56S) Neurotoxicity.
S. Kim, S. S. Leal, D. Ben Halevy, C. M. Gomes, and S. Lev (2010)
J. Biol. Chem. 285, 13839-13849
   Abstract »    Full Text »    PDF »
Electrostatic Interaction between Oxysterol-binding Protein and VAMP-associated Protein A Revealed by NMR and Mutagenesis Studies.
K. Furuita, J. Jee, H. Fukada, M. Mishima, and C. Kojima (2010)
J. Biol. Chem. 285, 12961-12970
   Abstract »    Full Text »    PDF »
Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control.
S. Han, M. A. Lone, R. Schneiter, and A. Chang (2010)
PNAS 107, 5851-5856
   Abstract »    Full Text »    PDF »
The inositol regulon controls viability in Candida glabrata.
E. K. Bethea, B. J. Carver, A. E. Montedonico, and T. B. Reynolds (2010)
Microbiology 156, 452-462
   Abstract »    Full Text »    PDF »
NTE1-encoded Phosphatidylcholine Phospholipase B Regulates Transcription of Phospholipid Biosynthetic Genes.
J. P. Fernandez-Murray, G. J. Gaspard, S. A. Jesch, and C. R. McMaster (2009)
J. Biol. Chem. 284, 36034-36046
   Abstract »    Full Text »    PDF »
Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response.
S. Schuck, W. A. Prinz, K. S. Thorn, C. Voss, and P. Walter (2009)
J. Cell Biol. 187, 525-536
   Abstract »    Full Text »    PDF »
Gene Activation by Dissociation of an Inhibitor from a Transcriptional Activation Domain.
F. Jiang, B. R. Frey, M. L. Evans, J. C. Friel, and J. E. Hopper (2009)
Mol. Cell. Biol. 29, 5604-5610
   Abstract »    Full Text »    PDF »
Cardiolipin Molecular Species with Shorter Acyl Chains Accumulate in Saccharomyces cerevisiae Mutants Lacking the Acyl Coenzyme A-binding Protein Acb1p: NEW INSIGHTS INTO ACYL CHAIN REMODELING OF CARDIOLIPIN.
P. J. Rijken, R. H. Houtkooper, H. Akbari, J. F. Brouwers, M. C. Koorengevel, B. de Kruijff, M. Frentzen, F. M. Vaz, and A. I. P. M. de Kroon (2009)
J. Biol. Chem. 284, 27609-27619
   Abstract »    Full Text »    PDF »
Enzymatic measurement of phosphatidic acid in cultured cells.
S.-y. Morita, K. Ueda, and S. Kitagawa (2009)
J. Lipid Res. 50, 1945-1952
   Abstract »    Full Text »    PDF »
A 25-Amino Acid Sequence of the Arabidopsis TGD2 Protein Is Sufficient for Specific Binding of Phosphatidic Acid.
B. Lu and C. Benning (2009)
J. Biol. Chem. 284, 17420-17427
   Abstract »    Full Text »    PDF »
Sequential Regulation of DOCK2 Dynamics by Two Phospholipids During Neutrophil Chemotaxis.
A. Nishikimi, H. Fukuhara, W. Su, T. Hongu, S. Takasuga, H. Mihara, Q. Cao, F. Sanematsu, M. Kanai, H. Hasegawa, et al. (2009)
Science 324, 384-387
   Abstract »    Full Text »    PDF »
Regulation of phospholipid synthesis in yeast.
G. M. Carman and G.-S. Han (2009)
J. Lipid Res. 50, S69-S73
   Abstract »    Full Text »    PDF »
Modulation of Sphingolipid Metabolism by the Phosphatidylinositol-4-phosphate Phosphatase Sac1p through Regulation of Phosphatidylinositol in Saccharomyces cerevisiae.
S. E. Brice, C. W. Alford, and L. A. Cowart (2009)
J. Biol. Chem. 284, 7588-7596
   Abstract »    Full Text »    PDF »
Yas3p, an Opi1 Family Transcription Factor, Regulates Cytochrome P450 Expression in Response to n-Alkanes in Yarrowia lipolytica.
K. Hirakawa, S. Kobayashi, T. Inoue, S. Endoh-Yamagami, R. Fukuda, and A. Ohta (2009)
J. Biol. Chem. 284, 7126-7137
   Abstract »    Full Text »    PDF »
Cell Wall Integrity MAPK Pathway Is Essential for Lipid Homeostasis.
L. R. Nunez, S. A. Jesch, M. L. Gaspar, C. Almaguer, M. Villa-Garcia, M. Ruiz-Noriega, J. Patton-Vogt, and S. A. Henry (2008)
J. Biol. Chem. 283, 34204-34217
   Abstract »    Full Text »    PDF »
A Block in Endoplasmic Reticulum-to-Golgi Trafficking Inhibits Phospholipid Synthesis and Induces Neutral Lipid Accumulation.
M. L. Gaspar, S. A. Jesch, R. Viswanatha, A. L. Antosh, W. J. Brown, S. D. Kohlwein, and S. A. Henry (2008)
J. Biol. Chem. 283, 25735-25751
   Abstract »    Full Text »    PDF »
S-Adenosyl-L-homocysteine Hydrolase, Key Enzyme of Methylation Metabolism, Regulates Phosphatidylcholine Synthesis and Triacylglycerol Homeostasis in Yeast: IMPLICATIONS FOR HOMOCYSTEINE AS A RISK FACTOR OF ATHEROSCLEROSIS.
N. Malanovic, I. Streith, H. Wolinski, G. Rechberger, S. D. Kohlwein, and O. Tehlivets (2008)
J. Biol. Chem. 283, 23989-23999
   Abstract »    Full Text »    PDF »
Characterization of the Yeast DGK1-encoded CTP-dependent Diacylglycerol Kinase.
G.-S. Han, L. O'Hara, S. Siniossoglou, and G. M. Carman (2008)
J. Biol. Chem. 283, 20443-20453
   Abstract »    Full Text »    PDF »
An Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth.
G.-S. Han, L. O'Hara, G. M. Carman, and S. Siniossoglou (2008)
J. Biol. Chem. 283, 20433-20442
   Abstract »    Full Text »    PDF »
Yeast Pgc1p (YPL206c) Controls the Amount of Phosphatidylglycerol via a Phospholipase C-type Degradation Mechanism.
M. Simockova, R. Holic, D. Tahotna, J. Patton-Vogt, and P. Griac (2008)
J. Biol. Chem. 283, 17107-17115
   Abstract »    Full Text »    PDF »
Evolutionarily conserved gene family important for fat storage.
B. Kadereit, P. Kumar, W.-J. Wang, D. Miranda, E. L. Snapp, N. Severina, I. Torregroza, T. Evans, and D. L. Silver (2008)
PNAS 105, 94-99
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Plays a Central Role in the Transcriptional Regulation of Glycerophospholipid Synthesis in Saccharomyces cerevisiae.
G. M. Carman and S. A. Henry (2007)
J. Biol. Chem. 282, 37293-37297
   Full Text »    PDF »
The Cellular Functions of the Yeast Lipin Homolog Pah1p Are Dependent on Its Phosphatidate Phosphatase Activity.
G.-S. Han, S. Siniossoglou, and G. M. Carman (2007)
J. Biol. Chem. 282, 37026-37035
   Abstract »    Full Text »    PDF »
Identification of Novel Membrane-binding Domains in Multiple Yeast Cdc42 Effectors.
S. Takahashi and P. M. Pryciak (2007)
Mol. Biol. Cell 18, 4945-4956
   Abstract »    Full Text »    PDF »
Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1.
C. Testerink, P. B. Larsen, D. van der Does, J. A. J. van Himbergen, and T. Munnik (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Inheritance of cortical ER in yeast is required for normal septin organization.
C. J.R. Loewen, B. P. Young, S. Tavassoli, and T. P. Levine (2007)
J. Cell Biol. 179, 467-483
   Abstract »    Full Text »    PDF »
Respiratory Deficiency Mediates the Regulation of CHO1-encoded Phosphatidylserine Synthase by mRNA Stability in Saccharomyces cerevisiae.
H.-S. Choi and G. M. Carman (2007)
J. Biol. Chem. 282, 31217-31227
   Abstract »    Full Text »    PDF »
SLC1 and SLC4 Encode Partially Redundant Acyl-Coenzyme A 1-Acylglycerol-3-phosphate O-Acyltransferases of Budding Yeast.
M. Benghezal, C. Roubaty, V. Veepuri, J. Knudsen, and A. Conzelmann (2007)
J. Biol. Chem. 282, 30845-30855
   Abstract »    Full Text »    PDF »
Nitric Oxide Is Critical for Inducing Phosphatidic Acid Accumulation in Xylanase-elicited Tomato Cells.
A. M. Laxalt, N. Raho, A. t. Have, and L. Lamattina (2007)
J. Biol. Chem. 282, 21160-21168
   Abstract »    Full Text »    PDF »
An Electrostatic/Hydrogen Bond Switch as the Basis for the Specific Interaction of Phosphatidic Acid with Proteins.
E. E. Kooijman, D. P. Tieleman, C. Testerink, T. Munnik, D. T. S. Rijkers, K. N. J. Burger, and B. de Kruijff (2007)
J. Biol. Chem. 282, 11356-11364
   Abstract »    Full Text »    PDF »
Basic Helix-Loop-Helix Transcription Factor Heterocomplex of Yas1p and Yas2p Regulates Cytochrome P450 Expression in Response to Alkanes in the Yeast Yarrowia lipolytica.
S. Endoh-Yamagami, K. Hirakawa, D. Morioka, R. Fukuda, and A. Ohta (2007)
Eukaryot. Cell 6, 734-743
   Abstract »    Full Text »    PDF »
Control of Phospholipid Synthesis by Phosphorylation of the Yeast Lipin Pah1p/Smp2p Mg2+-dependent Phosphatidate Phosphatase.
L. O'Hara, G.-S. Han, S. Peak-Chew, N. Grimsey, G. M. Carman, and S. Siniossoglou (2006)
J. Biol. Chem. 281, 34537-34548
   Abstract »    Full Text »    PDF »
Efficient Trafficking of Ceramide from the Endoplasmic Reticulum to the Golgi Apparatus Requires a VAMP-associated Protein-interacting FFAT Motif of CERT.
M. Kawano, K. Kumagai, M. Nishijima, and K. Hanada (2006)
J. Biol. Chem. 281, 30279-30288
   Abstract »    Full Text »    PDF »
Multiple Endoplasmic Reticulum-to-Nucleus Signaling Pathways Coordinate Phospholipid Metabolism with Gene Expression by Distinct Mechanisms.
S. A. Jesch, P. Liu, X. Zhao, M. T. Wells, and S. A. Henry (2006)
J. Biol. Chem. 281, 24070-24083
   Abstract »    Full Text »    PDF »
Inositol Induces a Profound Alteration in the Pattern and Rate of Synthesis and Turnover of Membrane Lipids in Saccharomyces cerevisiae.
M. L. Gaspar, M. A. Aregullin, S. A. Jesch, and S. A. Henry (2006)
J. Biol. Chem. 281, 22773-22785
   Abstract »    Full Text »    PDF »
The Phosphatidylinositol 4,5-Biphosphate and TORC2 Binding Proteins Slm1 and Slm2 Function in Sphingolipid Regulation.
M. Tabuchi, A. Audhya, A. B. Parsons, C. Boone, and S. D. Emr (2006)
Mol. Cell. Biol. 26, 5861-5875
   Abstract »    Full Text »    PDF »
MondoA-Mlx Heterodimers Are Candidate Sensors of Cellular Energy Status: Mitochondrial Localization and Direct Regulation of Glycolysis.
C. L. Sans, D. J. Satterwhite, C. A. Stoltzman, K. T. Breen, and D. E. Ayer (2006)
Mol. Cell. Biol. 26, 4863-4871
   Abstract »    Full Text »    PDF »
Genomic Analysis of the Opi- Phenotype.
L. C. Hancock, R. P. Behta, and J. M. Lopes (2006)
Genetics 173, 621-634
   Abstract »    Full Text »    PDF »
Oxysterol-binding Protein and Vesicle-associated Membrane Protein-associated Protein Are Required for Sterol-dependent Activation of the Ceramide Transport Protein.
R. J. Perry and N. D. Ridgway (2006)
Mol. Biol. Cell 17, 2604-2616
   Abstract »    Full Text »    PDF »
The Saccharomyces cerevisiae Lipin Homolog Is a Mg2+-dependent Phosphatidate Phosphatase Enzyme.
G.-S. Han, W.-I Wu, and G. M. Carman (2006)
J. Biol. Chem. 281, 9210-9218
   Abstract »    Full Text »    PDF »
Heterodimeric Capping Protein from Arabidopsis Is Regulated by Phosphatidic Acid.
S. Huang, L. Gao, L. Blanchoin, and C. J. Staiger (2006)
Mol. Biol. Cell 17, 1946-1958
   Abstract »    Full Text »    PDF »
Casein Kinase II Phosphorylation of the Yeast Phospholipid Synthesis Transcription Factor Opi1p.
Y.-F. Chang and G. M. Carman (2006)
J. Biol. Chem. 281, 4754-4761
   Abstract »    Full Text »    PDF »
The Retinoblastoma Family Proteins Bind to and Activate Diacylglycerol Kinase{zeta}.
A. P. Los, F. P. Vinke, J. de Widt, M. K. Topham, W. J. van Blitterswijk, and N. Divecha (2006)
J. Biol. Chem. 281, 858-866
   Abstract »    Full Text »    PDF »
Serial Analysis of Gene Expression Reveals Conserved Links between Protein Kinase A, Ribosome Biogenesis, and Phosphate Metabolism in Ustilago maydis.
L. M. Larraya, K. J. Boyce, A. So, B. R. Steen, S. Jones, M. Marra, and J. W. Kronstad (2005)
Eukaryot. Cell 4, 2029-2043
   Abstract »    Full Text »    PDF »
Glycerophosphocholine Catabolism as a New Route for Choline Formation for Phosphatidylcholine Synthesis by the Kennedy Pathway.
J. P. Fernandez-Murray and C. R. McMaster (2005)
J. Biol. Chem. 280, 38290-38296
   Abstract »    Full Text »    PDF »
Mutation of the TGD1 Chloroplast Envelope Protein Affects Phosphatidate Metabolism in Arabidopsis.
C. Xu, J. Fan, J. E. Froehlich, K. Awai, and C. Benning (2005)
PLANT CELL 17, 3094-3110
   Abstract »    Full Text »    PDF »
Regulatory Functions of Phospholipase D and Phosphatidic Acid in Plant Growth, Development, and Stress Responses.
X. Wang (2005)
Plant Physiology 139, 566-573
   Full Text »    PDF »
Regulation of the PIS1-encoded Phosphatidylinositol Synthase in Saccharomyces cerevisiae by Zinc.
S.-H. Han, G.-S. Han, W. M. Iwanyshyn, and G. M. Carman (2005)
J. Biol. Chem. 280, 29017-29024
   Abstract »    Full Text »    PDF »
The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth.
H. Santos-Rosa, J. Leung, N. Grimsey, S. Peak-Chew, and S. Siniossoglou (2005)
EMBO J. 24, 1931-1941
   Abstract »    Full Text »    PDF »
Regulating Inducible Transcription Through Controlled Localization.
E. C. Ziegler and S. Ghosh (2005)
Sci. STKE 2005, re6
   Abstract »    Full Text »    PDF »
Revisiting Purine-Histidine Cross-Pathway Regulation in Saccharomyces cerevisiae: A Central Role for a Small Molecule.
K. Rebora, B. Laloo, and B. Daignan-Fornier (2005)
Genetics 170, 61-70
   Abstract »    Full Text »    PDF »
A Highly Conserved Binding Site in Vesicle-associated Membrane Protein-associated Protein (VAP) for the FFAT Motif of Lipid-binding Proteins.
C. J. R. Loewen and T. P. Levine (2005)
J. Biol. Chem. 280, 14097-14104
   Abstract »    Full Text »    PDF »
The Snf1 Protein Kinase and Sit4 Protein Phosphatase Have Opposing Functions in Regulating TATA-Binding Protein Association With the Saccharomyces cerevisiae INO1 Promoter.
M. K. Shirra, S. E. Rogers, D. E. Alexander, and K. M. Arndt (2005)
Genetics 169, 1957-1972
   Abstract »    Full Text »    PDF »
Genome-wide Analysis Reveals Inositol, Not Choline, as the Major Effector of Ino2p-Ino4p and Unfolded Protein Response Target Gene Expression in Yeast.
S. A. Jesch, X. Zhao, M. T. Wells, and S. A. Henry (2005)
J. Biol. Chem. 280, 9106-9118
   Abstract »    Full Text »    PDF »
Role of the Unfolded Protein Response Pathway in Secretory Stress and Regulation of INO1 Expression in Saccharomyces cerevisiae.
H. J. Chang, S. A. Jesch, M. L. Gaspar, and S. A. Henry (2004)
Genetics 168, 1899-1913
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882