Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 304 (5677): 1675-1678

Copyright © 2004 by the American Association for the Advancement of Science

Msx1 Cooperates with Histone H1b for Inhibition of Transcription and Myogenesis

Hansol Lee,1,3 Raymond Habas,2,5 Cory Abate-Shen1,2,3,4*

Abstract: During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.

1 Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey (UMDNJ)–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
2 The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey (UMDNJ)–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
3 Department of Medicine, University of Medicine and Dentistry of New Jersey (UMDNJ)–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
4 Department of Neuroscience, University of Medicine and Dentistry of New Jersey (UMDNJ)–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
5 Department of Biochemistry, University of Medicine and Dentistry of New Jersey (UMDNJ)–Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.

* To whom correspondence should be addressed. E-mail: abate{at}cabm.rutgers.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2.
L. Millan-Arino, A. B. M. M. K. Islam, A. Izquierdo-Bouldstridge, R. Mayor, J.-M. Terme, N. Luque, M. Sancho, N. Lopez-Bigas, and A. Jordan (2014)
Nucleic Acids Res. 42, 4474-4493
   Abstract »    Full Text »    PDF »
Structural insights into the histone H1-nucleosome complex.
B.-R. Zhou, H. Feng, H. Kato, L. Dai, Y. Yang, Y. Zhou, and Y. Bai (2013)
PNAS 110, 19390-19395
   Abstract »    Full Text »    PDF »
H1 histones: current perspectives and challenges.
S. W. Harshman, N. L. Young, M. R. Parthun, and M. A. Freitas (2013)
Nucleic Acids Res. 41, 9593-9609
   Abstract »    Full Text »    PDF »
A Network of Transcription Factors Operates during Early Tooth Morphogenesis.
M. Zhao, V. Gupta, L. Raj, M. Roussel, and M. Bei (2013)
Mol. Cell. Biol. 33, 3099-3112
   Abstract »    Full Text »    PDF »
The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state.
J. M. Hernandez-Hernandez, C. Mallappa, B. T. Nasipak, S. Oesterreich, and A. N. Imbalzano (2013)
Nucleic Acids Res. 41, 5704-5716
   Abstract »    Full Text »    PDF »
OTX2 Represses Myogenic and Neuronal Differentiation in Medulloblastoma Cells.
R.-Y. Bai, V. Staedtke, H. G. Lidov, C. G. Eberhart, and G. J. Riggins (2012)
Cancer Res. 72, 5988-6001
   Abstract »    Full Text »    PDF »
Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity.
C. Anderson, V. C. Williams, B. Moyon, P. Daubas, S. Tajbakhsh, M. E. Buckingham, T. Shiroishi, S. M. Hughes, and A.-G. Borycki (2012)
Genes & Dev. 26, 2103-2117
   Abstract »    Full Text »    PDF »
The Linker Histone Plays a Dual Role during Gametogenesis in Saccharomyces cerevisiae.
J. M. Bryant, J. Govin, L. Zhang, G. Donahue, B. F. Pugh, and S. L. Berger (2012)
Mol. Cell. Biol. 32, 2771-2783
   Abstract »    Full Text »    PDF »
N- and C-terminal Domains Determine Differential Nucleosomal Binding Geometry and Affinity of Linker Histone Isotypes H10 and H1c.
P. Vyas and D. T. Brown (2012)
J. Biol. Chem. 287, 11778-11787
   Abstract »    Full Text »    PDF »
Histone H1 Variants Are Differentially Expressed and Incorporated into Chromatin during Differentiation and Reprogramming to Pluripotency.
J.-M. Terme, B. Sese, L. Millan-Arino, R. Mayor, J. C. I. Belmonte, M. J. Barrero, and A. Jordan (2011)
J. Biol. Chem. 286, 35347-35357
   Abstract »    Full Text »    PDF »
Histone Methyltransferase SETD3 Regulates Muscle Differentiation.
G. H. Eom, K.-B. Kim, J. H. Kim, J.-Y. Kim, J.-R. Kim, H. J. Kee, D.-W. Kim, N. Choe, H.-J. Park, H.-J. Son, et al. (2011)
J. Biol. Chem. 286, 34733-34742
   Abstract »    Full Text »    PDF »
The Rhox Homeobox Gene Cluster Is Imprinted and Selectively Targeted for Regulation by Histone H1 and DNA Methylation.
J. A. MacLean, A. Bettegowda, B. J. Kim, C.-H. Lou, S.-M. Yang, A. Bhardwaj, S. Shanker, Z. Hu, Y. Fan, S. Eckardt, et al. (2011)
Mol. Cell. Biol. 31, 1275-1287
   Abstract »    Full Text »    PDF »
Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition.
J.-H. Yang, Y. Song, J.-H. Seol, J. Y. Park, Y.-J. Yang, J.-W. Han, H.-D. Youn, and E.-J. Cho (2011)
PNAS 108, 85-90
   Abstract »    Full Text »    PDF »
Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo.
N. Maki, R. Suetsugu-Maki, S. Sano, K. Nakamura, O. Nishimura, H. Tarui, K. Del Rio-Tsonis, K. Ohsumi, K. Agata, and P. A. Tsonis (2010)
FASEB J 24, 3462-3467
   Abstract »    Full Text »    PDF »
A case study in cross-talk: the histone lysine methyltransferases G9a and GLP.
R. Collins and X. Cheng (2010)
Nucleic Acids Res. 38, 3503-3511
   Abstract »    Full Text »    PDF »
Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II.
Y. Zheng, S. John, J. J. Pesavento, J. R. Schultz-Norton, R. L. Schiltz, S. Baek, A. M. Nardulli, G. L. Hager, N. L. Kelleher, and C. A. Mizzen (2010)
J. Cell Biol. 189, 407-415
   Abstract »    Full Text »    PDF »
The NF-{kappa}B Factor RelB and Histone H3 Lysine Methyltransferase G9a Directly Interact to Generate Epigenetic Silencing in Endotoxin Tolerance.
X. Chen, M. El Gazzar, B. K. Yoza, and C. E. McCall (2009)
J. Biol. Chem. 284, 27857-27865
   Abstract »    Full Text »    PDF »
Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9.
Y. Wang, J. C. Groppe, J. Wu, T. Ogawa, G. Mues, R. N. D'Souza, and H. Kapadia (2009)
Hum. Mol. Genet. 18, 2863-2874
   Abstract »    Full Text »    PDF »
Isolation and Characterization of a Novel H1.2 Complex That Acts as a Repressor of p53-mediated Transcription.
K. Kim, J. Choi, K. Heo, H. Kim, D. Levens, K. Kohno, E. M. Johnson, H. W. Brock, and W. An (2008)
J. Biol. Chem. 283, 9113-9126
   Abstract »    Full Text »    PDF »
Conservation and Diversification of Msx Protein in Metazoan Evolution.
H. Takahashi, A. Kamiya, A. Ishiguro, A. C. Suzuki, N. Saitou, A. Toyoda, and J. Aruga (2008)
Mol. Biol. Evol. 25, 69-82
   Abstract »    Full Text »    PDF »
Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription.
K. Hayashi, S. Nakamura, W. Nishida, and K. Sobue (2006)
Mol. Cell. Biol. 26, 9456-9470
   Abstract »    Full Text »    PDF »
Histone variants--the structure behind the function.
J. Ausio (2006)
Briefings in Functional Genomics 5, 228-243
   Abstract »    Full Text »    PDF »
Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription.
J.-Q. Ni, L.-P. Liu, D. Hess, J. Rietdorf, and F.-L. Sun (2006)
Genes & Dev. 20, 1959-1973
   Abstract »    Full Text »    PDF »
Functional Consequences of Interactions between Pax9 and Msx1 Genes in Normal and Abnormal Tooth Development.
T. Ogawa, H. Kapadia, J. Q. Feng, R. Raghow, H. Peters, and R. N. D'Souza (2006)
J. Biol. Chem. 281, 18363-18369
   Abstract »    Full Text »    PDF »
PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein..
H. Lee, J. C. Quinn, K. V. Prasanth, V. A. Swiss, K. D. Economides, M. M. Camacho, D. L. Spector, and C. Abate-Shen (2006)
Genes & Dev. 20, 784-794
   Abstract »    Full Text »    PDF »
Novel MSX1 Frameshift Causes Autosomal-dominant Oligodontia.
J.-W. Kim, J.P. Simmer, B.P.-J. Lin, and J.C.-C. Hu (2006)
Journal of Dental Research 85, 267-271
   Abstract »    Full Text »    PDF »
Molecular Evolution of the Primate Developmental Genes MSX1 and PAX9.
G. H. Perry, B. C. Verrelli, and A. C. Stone (2006)
Mol. Biol. Evol. 23, 644-654
   Abstract »    Full Text »    PDF »
SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos.
X. Tan, J. Rotllant, H. Li, P. De Deyne, and S. J. Du (2006)
PNAS 103, 2713-2718
   Abstract »    Full Text »    PDF »
Differential In Vivo Binding Dynamics of Somatic and Oocyte-specific Linker Histones in Oocytes and During ES Cell Nuclear Transfer.
M. Becker, A. Becker, F. Miyara, Z. Han, M. Kihara, D. T. Brown, G. L. Hager, K. Latham, E. Y. Adashi, and T. Misteli (2005)
Mol. Biol. Cell 16, 3887-3895
   Abstract »    Full Text »    PDF »
The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription.
S. J. Tapscott (2005)
Development 132, 2685-2695
   Abstract »    Full Text »    PDF »
Parathymosin Affects the Binding of Linker Histone H1 to Nucleosomes and Remodels Chromatin Structure.
G. Martic, Z. Karetsou, K. Kefala, A. S. Politou, C. R. Clapier, T. Straub, and T. Papamarcaki (2005)
J. Biol. Chem. 280, 16143-16150
   Abstract »    Full Text »    PDF »
Linker histone variants control chromatin dynamics during early embryogenesis.
H. Saeki, K. Ohsumi, H. Aihara, T. Ito, S. Hirose, K. Ura, and Y. Kaneda (2005)
PNAS 102, 5697-5702
   Abstract »    Full Text »    PDF »
The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation.
G. Caretti, M. Di Padova, B. Micales, G. E. Lyons, and V. Sartorelli (2004)
Genes & Dev. 18, 2627-2638
   Abstract »    Full Text »    PDF »
DEVELOPMENTAL BIOLOGY: A Linker Histone Restricts Muscle Development.
L. Cirillo and K. Zaret (2004)
Science 304, 1607-1609
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882