Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 304 (5678): 1815-1819

Copyright © 2004 by the American Association for the Advancement of Science

Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct Synaptic Release Sites

Robert T. Fremeau, Jr.,1,2* Kaiwen Kam,2,3* Tayyaba Qureshi,5 Juliette Johnson,2,4 David R. Copenhagen,2,4 Jon Storm-Mathisen,5 Farrukh A. Chaudhry,5 Roger A. Nicoll,2,3{dagger} Robert H. Edwards1,2{dagger}

Abstract: Vesicular glutamate transporters (VGLUTs) 1 and 2 show a mutually exclusive distribution in the adult brain that suggests specialization for synapses with different properties of release. Consistent with this distribution, inactivation of the VGLUT1 gene silenced a subset ofexcitatory neurons in the adult. However, the same cell populations exhibited VGLUT1-independent transmission early in life. Developing hippocampal neurons transiently coexpressed VGLUT2 and VGLUT1 at distinct synaptic sites with different short-term plasticity. The loss of VGLUT1 also reduced the reserve pool of synaptic vesicles. Thus, VGLUT1 plays an unanticipated role in membrane trafficking at the nerve terminal.

1 Department of Neurology, Graduate Programs in Neuroscience and Cell Biology, University of California San Francisco School of Medicine, CA 94143, USA.
2 Department of Physiology, Graduate Programs in Neuroscience and Cell Biology, University of California San Francisco School of Medicine, CA 94143, USA.
3 Department of Cellular and Molecular Pharmacology, Graduate Programs in Neuroscience and Cell Biology, University of California San Francisco School of Medicine, CA 94143, USA.
4 Department of Ophthalmology, Graduate Programs in Neuroscience and Cell Biology, University of California San Francisco School of Medicine, CA 94143, USA.
5 Anatomical Institute and Centre for Molecular Biology and Neuroscience, University of Oslo, Post Office Box 1105 Blindern, N-0317 Oslo, Norway.

Back to Top

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: edwards{at}itsa.ucsf.edu (R.H.E.); nicoll{at}cmp.ucsf.edu (R.A.N.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Multiple Dileucine-like Motifs Direct VGLUT1 Trafficking.
S. M. Foss, H. Li, M. S. Santos, R. H. Edwards, and S. M. Voglmaier (2013)
J. Neurosci. 33, 10647-10660
   Abstract »    Full Text »    PDF »
Lack of Evidence for Vesicular Glutamate Transporter Expression in Mouse Astrocytes.
D. Li, K. Herault, K. Silm, A. Evrard, S. Wojcik, M. Oheim, E. Herzog, and N. Ropert (2013)
J. Neurosci. 33, 4434-4455
   Abstract »    Full Text »    PDF »
Gene Expression Identifies Distinct Ascending Glutamatergic Pathways to Frequency-Organized Auditory Cortex in the Rat Brain.
D. A. Storace, N. C. Higgins, J. A. Chikar, D. L. Oliver, and H. L. Read (2012)
J. Neurosci. 32, 15759-15768
   Abstract »    Full Text »    PDF »
Neurodevelopmental Role for VGLUT2 in Pyramidal Neuron Plasticity, Dendritic Refinement, and in Spatial Learning.
H. He, A. H. Mahnke, S. Doyle, N. Fan, C.-C. Wang, B. J. Hall, Y.-P. Tang, F. M. Inglis, C. Chen, and J. D. Erickson (2012)
J. Neurosci. 32, 15886-15901
   Abstract »    Full Text »    PDF »
Enhanced NMDA Receptor-Dependent Thalamic Excitation and Network Oscillations in Stargazer Mice.
C. J. Lacey, A. Bryant, J. Brill, and J. R. Huguenard (2012)
J. Neurosci. 32, 11067-11081
   Abstract »    Full Text »    PDF »
Clustered burst firing in FMR1 premutation hippocampal neurons: amelioration with allopregnanolone.
Z. Cao, S. Hulsizer, F. Tassone, H.-t. Tang, R. J. Hagerman, M. A. Rogawski, P. J. Hagerman, and I. N. Pessah (2012)
Hum. Mol. Genet. 21, 2923-2935
   Abstract »    Full Text »    PDF »
Vesicular and Plasma Membrane Transporters for Neurotransmitters.
R. D. Blakely and R. H. Edwards (2012)
Cold Spring Harb Perspect Biol 4, a005595
   Abstract »    Full Text »    PDF »
In Vivo Imaging of Intersynaptic Vesicle Exchange Using VGLUT1Venus Knock-In Mice.
E. Herzog, F. Nadrigny, K. Silm, C. Biesemann, I. Helling, T. Bersot, H. Steffens, R. Schwartzmann, U. V. Nagerl, S. El Mestikawy, et al. (2011)
J. Neurosci. 31, 15544-15559
   Abstract »    Full Text »    PDF »
Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution.
E. B. Malarkey and V. Parpura (2011)
J. Physiol. 589, 4271-4300
   Abstract »    Full Text »    PDF »
SNARE Force Synchronizes Synaptic Vesicle Fusion and Controls the Kinetics of Quantal Synaptic Transmission.
R. E. Guzman, Y. N. Schwarz, J. Rettig, and D. Bruns (2010)
J. Neurosci. 30, 10272-10281
   Abstract »    Full Text »    PDF »
Synaptic and Vesicular Coexistence of VGLUT and VGAT in Selected Excitatory and Inhibitory Synapses.
J.-F. Zander, A. Munster-Wandowski, I. Brunk, I. Pahner, G. Gomez-Lira, U. Heinemann, R. Gutierrez, G. Laube, and G. Ahnert-Hilger (2010)
J. Neurosci. 30, 7634-7645
   Abstract »    Full Text »    PDF »
AP-1/{sigma}1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory.
N. Glyvuk, Y. Tsytsyura, C. Geumann, R. D'Hooge, J. Huve, M. Kratzke, J. Baltes, D. Boning, J. Klingauf, and P. Schu (2010)
EMBO J. 29, 1318-1330
   Abstract »    Full Text »    PDF »
Vesicular Glutamate Transporter VGLUT1 Has a Role in Hippocampal Long-Term Potentiation and Spatial Reversal Learning.
D. Balschun, D. Moechars, Z. Callaerts-Vegh, B. Vermaercke, N. Van Acker, L. Andries, and R. D'Hooge (2010)
Cereb Cortex 20, 684-693
   Abstract »    Full Text »    PDF »
Hermansky-Pudlak Protein Complexes, AP-3 and BLOC-1, Differentially Regulate Presynaptic Composition in the Striatum and Hippocampus.
K. Newell-Litwa, S. Chintala, S. Jenkins, J.-F. Pare, L. McGaha, Y. Smith, and V. Faundez (2010)
J. Neurosci. 30, 820-831
   Abstract »    Full Text »    PDF »
Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone.
A. Korosi, M. Shanabrough, S. McClelland, Z.-W. Liu, E. Borok, X.-B. Gao, T. L. Horvath, and T. Z. Baram (2010)
J. Neurosci. 30, 703-713
   Abstract »    Full Text »    PDF »
Restricted Cortical and Amygdaloid Removal of Vesicular Glutamate Transporter 2 in Preadolescent Mice Impacts Dopaminergic Activity and Neuronal Circuitry of Higher Brain Function.
A. Wallen-Mackenzie, K. Nordenankar, K. Fejgin, M. C. Lagerstrom, L. Emilsson, R. Fredriksson, C. Wass, D. Andersson, E. Egecioglu, M. Andersson, et al. (2009)
J. Neurosci. 29, 2238-2251
   Abstract »    Full Text »    PDF »
Vesicular Glutamate and GABA Transporters Sort to Distinct Sets of Vesicles in a Population of Presynaptic Terminals.
J.-L. Boulland, M. Jenstad, A. J. Boekel, F. G. Wouterlood, R. H. Edwards, J. Storm-Mathisen, and F. A. Chaudhry (2009)
Cereb Cortex 19, 241-248
   Abstract »    Full Text »    PDF »
Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties.
J. Ding, J. D. Peterson, and D. J. Surmeier (2008)
J. Neurosci. 28, 6483-6492
   Abstract »    Full Text »    PDF »
Agouti-Related Peptide and MC3/4 Receptor Agonists Both Inhibit Excitatory Hypothalamic Ventromedial Nucleus Neurons.
L.-Y. Fu and A. N. van den Pol (2008)
J. Neurosci. 28, 5433-5449
   Abstract »    Full Text »    PDF »
Vesicular Glutamate Transporter 3 Is Required for Synaptic Transmission in Zebrafish Hair Cells.
N. Obholzer, S. Wolfson, J. G. Trapani, W. Mo, A. Nechiporuk, E. Busch-Nentwich, C. Seiler, S. Sidi, C. Sollner, R. N. Duncan, et al. (2008)
J. Neurosci. 28, 2110-2118
   Abstract »    Full Text »    PDF »
Kalirin-7 Is an Essential Component of both Shaft and Spine Excitatory Synapses in Hippocampal Interneurons.
X.-M. Ma, Y. Wang, F. Ferraro, R. E. Mains, and B. A. Eipper (2008)
J. Neurosci. 28, 711-724
   Abstract »    Full Text »    PDF »
TrkB is necessary for pruning at the climbing fibre-Purkinje cell synapse in the developing murine cerebellum.
E. M. Johnson, E. T. Craig, and H. H. Yeh (2007)
J. Physiol. 582, 629-646
   Abstract »    Full Text »    PDF »
Vesicular Glutamate Transporter 1 Is Required for Photoreceptor Synaptic Signaling But Not For Intrinsic Visual Functions.
J. Johnson, R. T. Fremeau Jr, J. L. Duncan, R. C. Renteria, H. Yang, Z. Hua, X. Liu, M. M. LaVail, R. H. Edwards, and D. R. Copenhagen (2007)
J. Neurosci. 27, 7245-7255
   Abstract »    Full Text »    PDF »
Regulation of CNS synapses by neuronal MHC class I.
C. A. Goddard, D. A. Butts, and C. J. Shatz (2007)
PNAS 104, 6828-6833
   Abstract »    Full Text »    PDF »
The Origin of Quantal Size Variation: Vesicular Glutamate Concentration Plays a Significant Role.
X.-S. Wu, L. Xue, R. Mohan, K. Paradiso, K. D. Gillis, and L.-G. Wu (2007)
J. Neurosci. 27, 3046-3056
   Abstract »    Full Text »    PDF »
Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry.
V. A. Petyuk, W.-J. Qian, M. H. Chin, H. Wang, E. A. Livesay, M. E. Monroe, J. N. Adkins, N. Jaitly, D. J. Anderson, D. G. Camp II, et al. (2007)
Genome Res. 17, 328-336
   Abstract »    Full Text »    PDF »
Vesicular Glutamate Transporter 2 Is Required for Central Respiratory Rhythm Generation But Not for Locomotor Central Pattern Generation..
A. Wallen-Mackenzie, H. Gezelius, M. Thoby-Brisson, A. Nygard, A. Enjin, F. Fujiyama, G. Fortin, and K. Kullander (2006)
J. Neurosci. 26, 12294-12307
   Abstract »    Full Text »    PDF »
Vesicular Glutamate Transporter VGLUT2 Expression Levels Control Quantal Size and Neuropathic Pain..
D. Moechars, M. C. Weston, S. Leo, Z. Callaerts-Vegh, I. Goris, G. Daneels, A. Buist, M. Cik, P. van der Spek, S. Kass, et al. (2006)
J. Neurosci. 26, 12055-12066
   Abstract »    Full Text »    PDF »
Secretion of L-glutamate from osteoclasts through transcytosis.
R. Morimoto, S. Uehara, S. Yatsushiro, N. Juge, Z. Hua, S. Senoh, N. Echigo, M. Hayashi, T. Mizoguchi, T. Ninomiya, et al. (2006)
EMBO J. 25, 4175-4186
   Abstract »    Full Text »    PDF »
Indispensability of the glutamate transporters GLAST and GLT1 to brain development.
T. R. Matsugami, K. Tanemura, M. Mieda, R. Nakatomi, K. Yamada, T. Kondo, M. Ogawa, K. Obata, M. Watanabe, T. Hashikawa, et al. (2006)
PNAS 103, 12161-12166
   Abstract »    Full Text »    PDF »
Stereotyped Axon Pruning via Plexin Signaling Is Associated with Synaptic Complex Elimination in the Hippocampus.
X.-B. Liu, L. K. Low, E. G. Jones, and H.-J. Cheng (2005)
J. Neurosci. 25, 9124-9134
   Abstract »    Full Text »    PDF »
Homeostatic Scaling of Vesicular Glutamate and GABA Transporter Expression in Rat Neocortical Circuits.
S. De Gois, M. K.-H. Schafer, N. Defamie, C. Chen, A. Ricci, E. Weihe, H. Varoqui, and J. D. Erickson (2005)
J. Neurosci. 25, 7121-7133
   Abstract »    Full Text »    PDF »
Presynaptic Regulation of Quantal Size by the Vesicular Glutamate Transporter VGLUT1.
N. R. Wilson, J. Kang, E. V. Hueske, T. Leung, H. Varoqui, J. G. Murnick, J. D. Erickson, and G. Liu (2005)
J. Neurosci. 25, 6221-6234
   Abstract »    Full Text »    PDF »
G{alpha}o2 Regulates Vesicular Glutamate Transporter Activity by Changing Its Chloride Dependence.
S. Winter, I. Brunk, D. J. Walther, M. Holtje, M. Jiang, J.-U. Peter, S. Takamori, R. Jahn, L. Birnbaumer, and G. Ahnert-Hilger (2005)
J. Neurosci. 25, 4672-4680
   Abstract »    Full Text »    PDF »
Early expression of AMPA receptors and lack of NMDA receptors in developing rat climbing fibre synapses.
P. Lachamp, B. Balland, F. Tell, A. Baude, C. Strube, M. Crest, and J.-P. Kessler (2005)
J. Physiol. 564, 751-763
   Abstract »    Full Text »    PDF »
A Novel Pathway for Presynaptic Mitogen-Activated Kinase Activation via AMPA Receptors.
U. Schenk, E. Menna, T. Kim, M. Passafaro, S. Chang, P. De Camilli, and M. Matteoli (2005)
J. Neurosci. 25, 1654-1663
   Abstract »    Full Text »    PDF »
Normal Biogenesis and Cycling of Empty Synaptic Vesicles in Dopamine Neurons of Vesicular Monoamine Transporter 2 Knockout Mice.
B. G. Croft, G. D. Fortin, A. T. Corera, R. H. Edwards, A. Beaudet, L.-E. Trudeau, and E. A. Fon (2005)
Mol. Biol. Cell 16, 306-315
   Abstract »    Full Text »    PDF »
Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content.
R. W. Daniels, C. A. Collins, M. V. Gelfand, J. Dant, E. S. Brooks, D. E. Krantz, and A. DiAntonio (2004)
J. Neurosci. 24, 10466-10474
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: Vesicular Glutamate Transporter--Shooting Blanks.
K. Schuske and E. M. Jorgensen (2004)
Science 304, 1750-1752
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882