Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 305 (5688): 1286-1289

Copyright © 2004 by the American Association for the Advancement of Science

E Protein Silencing by the Leukemogenic AML1-ETO Fusion Protein

Jinsong Zhang,1 Markus Kalkum,2 Soichiro Yamamura,1 Brian T. Chait,2 Robert G. Roeder1*

Abstract: The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 15% of acute myeloid leukemia (AML) cases. This study shows that AML1-ETO, as well as ETO, inhibits transcriptional activation by E proteins through stable interactions that preclude recruitment of p300/CREB-binding protein (CBP) coactivators. These interactions are mediated by a conserved ETO TAF4 homology domain and a 17–amino acid p300/CBP and ETO target motif within AD1 activation domains of E proteins. In t(8;21) leukemic cells, very stable interactions between AML1-ETO and E proteins underlie a t(8;21) translocation-specific silencing of E protein function through an aberrant cofactor exchange mechanism. These studies identify E proteins as AML1-ETO targets whose dysregulation may be important for t(8;21) leukemogenesis, as well as an E protein silencing mechanism that is distinct from that associated with differentiation-inhibitory proteins.

1 Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
2 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

* To whom correspondence should be addressed. E-mail: roeder{at}mail.rockefeller.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300.
C. M. Denis, D. N. Langelaan, A. C. Kirlin, S. Chitayat, K. Munro, H. L. Spencer, D. P. LeBrun, and S. P. Smith (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways.
C.-H. Gow, C. Guo, D. Wang, Q. Hu, and J. Zhang (2014)
Nucleic Acids Res. 42, 137-152
   Abstract »    Full Text »    PDF »
Inferring chromatin-bound protein complexes from genome-wide binding assays.
E. G. Giannopoulou and O. Elemento (2013)
Genome Res. 23, 1295-1306
   Abstract »    Full Text »    PDF »
A TAF4 coactivator function for E proteins that involves enhanced TFIID binding.
W.-Y. Chen, J. Zhang, H. Geng, Z. Du, T. Nakadai, and R. G. Roeder (2013)
Genes & Dev. 27, 1596-1609
   Abstract »    Full Text »    PDF »
Essential Roles of Da Transactivation Domains in Neurogenesis and in E(spl)-Mediated Repression.
I. Zarifi, M. Kiparaki, K. A. Koumbanakis, N. Giagtzoglou, E. Zacharioudaki, A. Alexiadis, I. Livadaras, and C. Delidakis (2012)
Mol. Cell. Biol. 32, 4534-4548
   Abstract »    Full Text »    PDF »
Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1.
C. M. Denis, S. Chitayat, M. J. Plevin, F. Wang, P. Thompson, S. Liu, H. L. Spencer, M. Ikura, D. P. LeBrun, and S. P. Smith (2012)
Blood 120, 3968-3977
   Abstract »    Full Text »    PDF »
ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia.
J. H. A. Martens, A. Mandoli, F. Simmer, B.-J. Wierenga, S. Saeed, A. A. Singh, L. Altucci, E. Vellenga, and H. G. Stunnenberg (2012)
Blood 120, 4038-4048
   Abstract »    Full Text »    PDF »
Biochemical and Phosphoproteomic Analysis of the Helix-Loop-Helix Protein E47.
R. Teachenor, K. Beck, L. Y. T. Wright, Z. Shen, S. P. Briggs, and C. Murre (2012)
Mol. Cell. Biol. 32, 1671-1682
   Abstract »    Full Text »    PDF »
Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence.
M. A. Fischer, I. Moreno-Miralles, A. Hunt, B. J. Chyla, and S. W. Hiebert (2012)
EMBO J. 31, 1494-1505
   Abstract »    Full Text »    PDF »
The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation.
L. Wang, A. Gural, X.-J. Sun, X. Zhao, F. Perna, G. Huang, M. A. Hatlen, L. Vu, F. Liu, H. Xu, et al. (2011)
Science 333, 765-769
   Abstract »    Full Text »    PDF »
Mtg16/Eto2 Contributes to Murine T-Cell Development.
A. Hunt, M. Fischer, M. E. Engel, and S. W. Hiebert (2011)
Mol. Cell. Biol. 31, 2544-2551
   Abstract »    Full Text »    PDF »
Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity.
C. Wichmann, Y. Becker, L. Chen-Wichmann, V. Vogel, A. Vojtkova, J. Herglotz, S. Moore, J. Koch, J. Lausen, W. Mantele, et al. (2010)
Blood 116, 603-613
   Abstract »    Full Text »    PDF »
Systematic in vivo structure-function analysis of p300 in hematopoiesis.
E. A. Kimbrel, M. E. Lemieux, X. Xia, T. N. Davis, V. I. Rebel, and A. L. Kung (2009)
Blood 114, 4804-4812
   Abstract »    Full Text »    PDF »
Multivalent Binding of the ETO Corepressor to E Proteins Facilitates Dual Repression Controls Targeting Chromatin and the Basal Transcription Machinery.
C. Guo, Q. Hu, C. Yan, and J. Zhang (2009)
Mol. Cell. Biol. 29, 2644-2657
   Abstract »    Full Text »    PDF »
Structure of the AML1-ETO eTAFH domain-HEB peptide complex and its contribution to AML1-ETO activity.
S. Park, W. Chen, T. Cierpicki, M. Tonelli, X. Cai, N. A. Speck, and J. H. Bushweller (2009)
Blood 113, 3558-3567
   Abstract »    Full Text »    PDF »
The class I bHLH factors E2-2A and E2-2B regulate EMT.
V. R. Sobrado, G. Moreno-Bueno, E. Cubillo, L. J. Holt, M. A. Nieto, F. Portillo, and A. Cano (2009)
J. Cell Sci. 122, 1014-1024
   Abstract »    Full Text »    PDF »
RUNX1 Translocations in Malignant Hemopathies.
E. DE BRAEKELEER, C. FEREC, and M. DE BRAEKELEER (2009)
Anticancer Res 29, 1031-1037
   Abstract »    Full Text »    PDF »
CBF{beta} is critical for AML1-ETO and TEL-AML1 activity.
L. Roudaia, M. D. Cheney, E. Manuylova, W. Chen, M. Morrow, S. Park, C.-T. Lee, P. Kaur, O. Williams, J. H. Bushweller, et al. (2009)
Blood 113, 3070-3079
   Abstract »    Full Text »    PDF »
MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state.
Z. Yang, K. L. MacQuarrie, E. Analau, A. E. Tyler, F. J. Dilworth, Y. Cao, S. J. Diede, and S. J. Tapscott (2009)
Genes & Dev. 23, 694-707
   Abstract »    Full Text »    PDF »
Transforming activity of AML1-ETO is independent of CBF{beta} and ETO interaction but requires formation of homo-oligomeric complexes.
C. Kwok, B. B. Zeisig, J. Qiu, S. Dong, and C. W. E. So (2009)
PNAS 106, 2853-2858
   Abstract »    Full Text »    PDF »
RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis.
M. Yan, E.-Y. Ahn, S. W. Hiebert, and D.-E. Zhang (2009)
Blood 113, 883-886
   Abstract »    Full Text »    PDF »
Deletion of Mtg16, a Target of t(16;21), Alters Hematopoietic Progenitor Cell Proliferation and Lineage Allocation.
B. J. Chyla, I. Moreno-Miralles, M. A. Steapleton, M. A. Thompson, S. Bhaskara, M. Engel, and S. W. Hiebert (2008)
Mol. Cell. Biol. 28, 6234-6247
   Abstract »    Full Text »    PDF »
Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia.
C. K. Cheng, L. Li, S. H. Cheng, K. M. Lau, N. P. H. Chan, R. S. M. Wong, M. M. K. Shing, C. K. Li, and M. H. L. Ng (2008)
Blood 112, 3391-3402
   Abstract »    Full Text »    PDF »
Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation.
I. Hamlett, J. Draper, J. Strouboulis, F. Iborra, C. Porcher, and P. Vyas (2008)
Blood 112, 2738-2749
   Abstract »    Full Text »    PDF »
CBFA2T3-ZNF652 Corepressor Complex Regulates Transcription of the E-box Gene HEB.
R. Kumar, K. M. Cheney, R. McKirdy, P. M. Neilsen, R. B. Schulz, J. Lee, J. Cohen, G. W. Booker, and D. F. Callen (2008)
J. Biol. Chem. 283, 19026-19038
   Abstract »    Full Text »    PDF »
Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity.
X. Zhao, V. Jankovic, A. Gural, G. Huang, A. Pardanani, S. Menendez, J. Zhang, R. Dunne, A. Xiao, H. Erdjument-Bromage, et al. (2008)
Genes & Dev. 22, 640-653
   Abstract »    Full Text »    PDF »
Myeloid Translocation Gene Family Members Associate with T-Cell Factors (TCFs) and Influence TCF-Dependent Transcription.
A. C. Moore, J. M. Amann, C. S. Williams, E. Tahinci, T. E. Farmer, J. A. Martinez, G. Yang, K. S. Luce, E. Lee, and S. W. Hiebert (2008)
Mol. Cell. Biol. 28, 977-987
   Abstract »    Full Text »    PDF »
Differential Roles for the E2A Activation Domains in B Lymphocytes and Macrophages.
S. Bhalla, C. Spaulding, R. L. Brumbaugh, D. E. Zagort, M. E. Massari, C. Murre, and B. L. Kee (2008)
J. Immunol. 180, 1694-1703
   Abstract »    Full Text »    PDF »
Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators.
X. Wang, D. M. Truckses, S. Takada, T. Matsumura, N. Tanese, and R. H. Jacobson (2007)
PNAS 104, 7839-7844
   Abstract »    Full Text »    PDF »
Human T-Cell Leukemia Virus Type 1 Tax Protein Down-Regulates Pre-T-Cell Receptor Alpha Gene Transcription in Human Immature Thymocytes.
M. Wencker, C. Sausse, D. Derse, L. Gazzolo, and M. Duc Dodon (2007)
J. Virol. 81, 301-308
   Abstract »    Full Text »    PDF »
Expression of T-lineage-affiliated transcripts and TCR rearrangements in acute promyelocytic leukemia: implications for the cellular target of t(15;17).
E. Chapiro, E. Delabesse, V. Asnafi, C. Millien, F. Davi, E. Nugent, K. Beldjord, T. Haferlach, D. Grimwade, and E. A. Macintyre (2006)
Blood 108, 3484-3493
   Abstract »    Full Text »    PDF »
Critical Role for a Single Leucine Residue in Leukemia Induction by E2A-PBX1.
R. Bayly, T. Murase, B. D. Hyndman, R. Savage, S. Nurmohamed, K. Munro, R. Casselman, S. P. Smith, and D. P. LeBrun (2006)
Mol. Cell. Biol. 26, 6442-6452
   Abstract »    Full Text »    PDF »
ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription.
R. Kumar, J. Manning, H. E. Spendlove, G. Kremmidiotis, R. McKirdy, J. Lee, D. N. Millband, K. M. Cheney, M. R. Stampfer, P. P. Dwivedi, et al. (2006)
Mol. Cancer Res. 4, 655-665
   Abstract »    Full Text »    PDF »
The acute myeloid leukemia fusion protein AML1-ETO targets E proteins via a paired amphipathic helix-like TBP-associated factor homology domain.
M. J. Plevin, J. Zhang, C. Guo, R. G. Roeder, and M. Ikura (2006)
PNAS 103, 10242-10247
   Abstract »    Full Text »    PDF »
The Basic Helix-Loop-Helix Transcription Factor HEBAlt Is Expressed in Pro-T Cells and Enhances the Generation of T Cell Precursors.
D. Wang, C. L. Claus, G. Vaccarelli, M. Braunstein, T. M. Schmitt, J. C. Zuniga-Pflucker, E. V. Rothenberg, and M. K. Anderson (2006)
J. Immunol. 177, 109-119
   Abstract »    Full Text »    PDF »
Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development.
R. Schwartz, I. Engel, M. Fallahi-Sichani, H. T. Petrie, and C. Murre (2006)
PNAS 103, 9976-9981
   Abstract »    Full Text »    PDF »
Erythroid Inhibition by the Leukemic Fusion AML1-ETO Is Associated with Impaired Acetylation of the Major Erythroid Transcription Factor GATA-1..
Y. Choi, K. E. Elagib, L. L. Delehanty, and A. N. Goldfarb (2006)
Cancer Res. 66, 2990-2996
   Abstract »    Full Text »    PDF »
ETO2 coordinates cellular proliferation and differentiation during erythropoiesis.
N. Goardon, J. A. Lambert, P. Rodriguez, P. Nissaire, S. Herblot, P. Thibault, D. Dumenil, J. Strouboulis, P.-H. Romeo, and T. Hoang (2006)
EMBO J. 25, 357-366
   Abstract »    Full Text »    PDF »
ETO-2 Associates with SCL in Erythroid Cells and Megakaryocytes and Provides Repressor Functions in Erythropoiesis.
A. H. Schuh, A. J. Tipping, A. J. Clark, I. Hamlett, B. Guyot, F. J. Iborra, P. Rodriguez, J. Strouboulis, T. Enver, P. Vyas, et al. (2005)
Mol. Cell. Biol. 25, 10235-10250
   Abstract »    Full Text »    PDF »
The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor.
J. Wildonger and R. S. Mann (2005)
Development 132, 2263-2272
   Abstract »    Full Text »    PDF »
Chromatin modifying activity of leukaemia associated fusion proteins.
L. Di Croce (2005)
Hum. Mol. Genet. 14, R77-R84
   Abstract »    Full Text »    PDF »
Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development.
M. Yan, S. A. Burel, L. F. Peterson, E. Kanbe, H. Iwasaki, A. Boyapati, R. Hines, K. Akashi, and D.-E. Zhang (2004)
PNAS 101, 17186-17191
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882