Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 305 (5689): 1466-1470

Copyright © 2004 by the American Association for the Advancement of Science

Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix

Loren D. Walensky,1,2 Andrew L. Kung,2,3 Iris Escher,4 Thomas J. Malia,5,6 Scott Barbuto,1 Renee D. Wright,3 Gerhard Wagner,5 Gregory L. Verdine,4* Stanley J. Korsmeyer1*

Abstract: BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic {alpha}-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called "stabilized alpha-helix of BCL-2 domains" (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.

1 Howard Hughes Medical Institute,
2 Department of Pediatric Hematology/Oncology and Children's Hospital Boston
3 Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
4 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
6 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

* To whom correspondence should be addressed. E-mail: stanley_korsmeyer{at} (S.J.K.) and verdine{at} (G.L.V.)

Essential Role of the Linear Ubiquitin Chain Assembly Complex in Lymphoma Revealed by Rare Germline Polymorphisms.
Y. Yang, R. Schmitz, J. Mitala, A. Whiting, W. Xiao, M. Ceribelli, G. W. Wright, H. Zhao, Y. Yang, W. Xu, et al. (2014)
Cancer Discovery 4, 480-493
   Abstract »    Full Text »    PDF »
Effect of Small-Molecule Modification on Single-Cell Pharmacokinetics of PARP Inhibitors.
G. M. Thurber, T. Reiner, K. S. Yang, R. H. Kohler, and R. Weissleder (2014)
Mol. Cancer Ther. 13, 986-995
   Abstract »    Full Text »    PDF »
Selective Recapitulation of Conserved and Nonconserved Regions of Putative NOXA1 Protein Activation Domain Confers Isoform-specific Inhibition of Nox1 Oxidase and Attenuation of Endothelial Cell Migration.
D. J. Ranayhossaini, A. I. Rodriguez, S. Sahoo, B. B. Chen, R. K. Mallampalli, E. E. Kelley, G. Csanyi, M. T. Gladwin, G. Romero, and P. J. Pagano (2013)
J. Biol. Chem. 288, 36437-36450
   Abstract »    Full Text »    PDF »
Protein Engineering for Cardiovascular Therapeutics: Untapped Potential for Cardiac Repair.
S. M. Jay and R. T. Lee (2013)
Circ. Res. 113, 933-943
   Abstract »    Full Text »    PDF »
Stapled {alpha}-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy.
Y. S. Chang, B. Graves, V. Guerlavais, C. Tovar, K. Packman, K.-H. To, K. A. Olson, K. Kesavan, P. Gangurde, A. Mukherjee, et al. (2013)
PNAS 110, E3445-E3454
   Abstract »    Full Text »    PDF »
BH3 Mimetics: Status of the Field and New Developments.
C. Billard (2013)
Mol. Cancer Ther. 12, 1691-1700
   Abstract »    Full Text »    PDF »
Direct activation of full-length proapoptotic BAK.
E. S. Leshchiner, C. R. Braun, G. H. Bird, and L. D. Walensky (2013)
PNAS 110, E986-E995
   Abstract »    Full Text »    PDF »
BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition.
R. Haq, S. Yokoyama, E. B. Hawryluk, G. B. Jonsson, D. T. Frederick, K. McHenry, D. Porter, T.-N. Tran, K. T. Love, R. Langer, et al. (2013)
PNAS 110, 4321-4326
   Abstract »    Full Text »    PDF »
On the binding affinity of macromolecular interactions: daring to ask why proteins interact.
P. L. Kastritis and A. M. J. J. Bonvin (2012)
J R Soc Interface 10, 20120835
   Abstract »    Full Text »    PDF »
Inhibition of oncogenic Wnt signaling through direct targeting of {beta}-catenin.
T. N. Grossmann, J. T.- H. Yeh, B. R. Bowman, Q. Chu, R. E. Moellering, and G. L. Verdine (2012)
PNAS 109, 17942-17947
   Abstract »    Full Text »    PDF »
Targeted Disruption of the BCL9/{beta}-Catenin Complex Inhibits Oncogenic Wnt Signaling.
K. Takada, D. Zhu, G. H. Bird, K. Sukhdeo, J.-J. Zhao, M. Mani, M. Lemieux, D. E. Carrasco, J. Ryan, D. Horst, et al. (2012)
Science Translational Medicine 4, 148ra117
   Abstract »    Full Text »    PDF »
Stapling Mimics Noncovalent Interactions of {gamma}-Carboxyglutamates in Conantokins, Peptidic Antagonists of N-Methyl-D-Aspartic Acid Receptors.
R. J. Platt, T. S. Han, B. R. Green, M. D. Smith, J. Skalicky, P. Gruszczynski, H. S. White, B. Olivera, G. Bulaj, and J. Gajewiak (2012)
J. Biol. Chem. 287, 20727-20736
   Abstract »    Full Text »    PDF »
Finding a Panacea among Combination Cancer Therapies.
R. Yamaguchi and G. Perkins (2012)
Cancer Res. 72, 18-23
   Abstract »    Full Text »    PDF »
Polypeptide Modulators of Caspase Recruitment Domain (CARD)-CARD-mediated Protein-Protein Interactions.
Y. Palacios-Rodriguez, G. Garcia-Lainez, M. Sancho, A. Gortat, M. Orzaez, and E. Perez-Paya (2011)
J. Biol. Chem. 286, 44457-44466
   Abstract »    Full Text »    PDF »
Identification of a Novel Mcl-1 Protein Binding Motif.
W. J. Placzek, M. Sturlese, B. Wu, J. F. Cellitti, J. Wei, and M. Pellecchia (2011)
J. Biol. Chem. 286, 39829-39835
   Abstract »    Full Text »    PDF »
R. O. Crooks, T. Rao, and J. M. Mason (2011)
J. Biol. Chem. 286, 29470-29479
   Abstract »    Full Text »    PDF »
The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment.
R. Elkholi, K. V. Floros, and J. E. Chipuk (2011)
Genes & Cancer 2, 523-537
   Abstract »    Full Text »    PDF »
Amphipathic Tail-anchoring Peptide and Bcl-2 Homology Domain-3 (BH3) Peptides from Bcl-2 Family Proteins Induce Apoptosis through Different Mechanisms.
J.-K. Ko, K.-H. Choi, J. Peng, F. He, Z. Zhang, N. Weisleder, J. Lin, and J. Ma (2011)
J. Biol. Chem. 286, 9038-9048
   Abstract »    Full Text »    PDF »
D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms.
M. Liu, C. Li, M. Pazgier, C. Li, Y. Mao, Y. Lv, B. Gu, G. Wei, W. Yuan, C. Zhan, et al. (2010)
PNAS 107, 14321-14326
   Abstract »    Full Text »    PDF »
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic.
G. H. Bird, N. Madani, A. F. Perry, A. M. Princiotto, J. G. Supko, X. He, E. Gavathiotis, J. G. Sodroski, and L. D. Walensky (2010)
PNAS 107, 14093-14098
   Abstract »    Full Text »    PDF »
mRNA display selection of a high-affinity, Bcl-XL-specific binding peptide.
N. Matsumura, T. Tsuji, T. Sumida, M. Kokubo, M. Onimaru, N. Doi, H. Takashima, E. Miyamoto-Sato, and H. Yanagawa (2010)
FASEB J 24, 2201-2210
   Abstract »    Full Text »    PDF »
Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency.
R. S. Harrison, N. E. Shepherd, H. N. Hoang, G. Ruiz-Gomez, T. A. Hill, R. W. Driver, V. S. Desai, P. R. Young, G. Abbenante, and D. P. Fairlie (2010)
PNAS 107, 11686-11691
   Abstract »    Full Text »    PDF »
A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice.
J. K. Bielicki, H. Zhang, Y. Cortez, Y. Zheng, V. Narayanaswami, A. Patel, J. Johansson, and S. Azhar (2010)
J. Lipid Res. 51, 1496-1503
   Abstract »    Full Text »    PDF »
Novel Bcl-2 Homology-3 Domain-like Sequences Identified from Screening Randomized Peptide Libraries for Inhibitors of the Pro-survival Bcl-2 Proteins.
E. F. Lee, A. Fedorova, K. Zobel, M. J. Boyle, H. Yang, M. A. Perugini, P. M. Colman, D. C. S. Huang, K. Deshayes, and W. D. Fairlie (2009)
J. Biol. Chem. 284, 31315-31326
   Abstract »    Full Text »    PDF »
Context-dependent Bcl-2/Bak Interactions Regulate Lymphoid Cell Apoptosis.
H. Dai, X. W. Meng, S.-H. Lee, P. A. Schneider, and S. H. Kaufmann (2009)
J. Biol. Chem. 284, 18311-18322
   Abstract »    Full Text »    PDF »
Molecular Basis for Bcl-2 Homology 3 Domain Recognition in the Bcl-2 Protein Family: IDENTIFICATION OF CONSERVED HOT SPOT INTERACTIONS.
G. Moroy, E. Martin, A. Dejaegere, and R. H. Stote (2009)
J. Biol. Chem. 284, 17499-17511
   Abstract »    Full Text »    PDF »
Design of Peptide-based Inhibitors for Human Immunodeficiency Virus Type 1 Strains Resistant to T-20.
K. Izumi, E. Kodama, K. Shimura, Y. Sakagami, K. Watanabe, S. Ito, T. Watabe, Y. Terakawa, H. Nishikawa, S. G. Sarafianos, et al. (2009)
J. Biol. Chem. 284, 4914-4920
   Abstract »    Full Text »    PDF »
Expanding Circle of Inhibition: Small-Molecule Inhibitors of Bcl-2 as Anticancer Cell and Antiangiogenic Agents.
B. D. Zeitlin, I. J. Zeitlin, and J. E. Nor (2008)
J. Clin. Oncol. 26, 4180-4188
   Abstract »    Full Text »    PDF »
Proapoptotic Bad and Bid Protein Expression Predict Survival in Stages II and III Colon Cancers.
F. A. Sinicrope, R. L. Rego, N. R. Foster, S. N. Thibodeau, S. R. Alberts, H. E. Windschitl, and D. J. Sargent (2008)
Clin. Cancer Res. 14, 4128-4133
   Abstract »    Full Text »    PDF »
Multimodal Targeting of the BCL-2 Family in Cancer.
L. D Walensky (2008)
Am. Assoc. Cancer Res. Educ. Book 2008, 349-356
   Abstract »    Full Text »    PDF »
Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma.
L. T. Lam, G. Wright, R. E. Davis, G. Lenz, P. Farinha, L. Dang, J. W. Chan, A. Rosenwald, R. D. Gascoyne, and L. M. Staudt (2008)
Blood 111, 3701-3713
   Abstract »    Full Text »    PDF »
Anti-Apoptosis Mechanisms in Malignant Gliomas.
D. S. Ziegler, A. L. Kung, and M. W. Kieran (2008)
J. Clin. Oncol. 26, 493-500
   Abstract »    Full Text »    PDF »
BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death.
N. N. Danial (2007)
Clin. Cancer Res. 13, 7254-7263
   Abstract »    Full Text »    PDF »
The Challenge of Drugging Undruggable Targets in Cancer: Lessons Learned from Targeting BCL-2 Family Members.
G. L. Verdine and L. D. Walensky (2007)
Clin. Cancer Res. 13, 7264-7270
   Abstract »    Full Text »    PDF »
Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis.
M. Nguyen, R. C. Marcellus, A. Roulston, M. Watson, L. Serfass, S. R. Murthy Madiraju, D. Goulet, J. Viallet, L. Belec, X. Billot, et al. (2007)
PNAS 104, 19512-19517
   Abstract »    Full Text »    PDF »
The role of peptide motifs in the evolution of a protein network.
H. Saito, S. Kashida, T. Inoue, and K. Shiba (2007)
Nucleic Acids Res. 35, 6357-6366
   Abstract »    Full Text »    PDF »
The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis.
J.-K. Ko, K.-H. Choi, Z. Pan, P. Lin, N. Weisleder, C.-W. Kim, and J. Ma (2007)
J. Cell Sci. 120, 2912-2923
   Abstract »    Full Text »    PDF »
Amphipathic Peptide-Based Fusion Peptides and Immunoconjugates for the Targeted Ablation of Prostate Cancer Cells.
K. Rege, S. J. Patel, Z. Megeed, and M. L. Yarmush (2007)
Cancer Res. 67, 6368-6375
   Abstract »    Full Text »    PDF »
2-Methoxy antimycin reveals a unique mechanism for Bcl-xL inhibition.
P. S. Schwartz, M. K. Manion, C. B. Emerson, J. S. Fry, C. M. Schulz, I. R. Sweet, and D. M. Hockenbery (2007)
Mol. Cancer Ther. 6, 2073-2080
   Abstract »    Full Text »    PDF »
Targeting Multiple Arms of the Apoptotic Regulatory Machinery.
Y. Dai and S. Grant (2007)
Cancer Res. 67, 2908-2911
   Abstract »    Full Text »    PDF »
Mcl-1 Down-regulation Potentiates ABT-737 Lethality by Cooperatively Inducing Bak Activation and Bax Translocation.
S. Chen, Y. Dai, H. Harada, P. Dent, and S. Grant (2007)
Cancer Res. 67, 782-791
   Abstract »    Full Text »    PDF »
BCL2 Is a Downstream Effector of MIZ-1 Essential for Blocking c-MYC-induced Apoptosis.
J. H. Patel and S. B. McMahon (2007)
J. Biol. Chem. 282, 5-13
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Permeabilization in Cell Death.
G. Kroemer, L. Galluzzi, and C. Brenner (2007)
Physiol Rev 87, 99-163
   Abstract »    Full Text »    PDF »
A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro.
K. J. Oh, S. Barbuto, K. Pitter, J. Morash, L. D. Walensky, and S. J. Korsmeyer (2006)
J. Biol. Chem. 281, 36999-37008
   Abstract »    Full Text »    PDF »
A Small-Molecule Inhibitor of Bcl-XL Potentiates the Activity of Cytotoxic Drugs In vitro and In vivo..
A. R. Shoemaker, A. Oleksijew, J. Bauch, B. A. Belli, T. Borre, M. Bruncko, T. Deckwirth, D. J. Frost, K. Jarvis, M. K. Joseph, et al. (2006)
Cancer Res. 66, 8731-8739
   Abstract »    Full Text »    PDF »
Targeting protein-protein interactions by rational design: mimicry of protein surfaces.
S. Fletcher and A. D Hamilton (2006)
J R Soc Interface 3, 215-233
   Abstract »    Full Text »    PDF »
Chemotherapeutic approaches for targeting cell death pathways..
M. S. Ricci and W.-X. Zong (2006)
Oncologist 11, 342-357
   Abstract »    Full Text »    PDF »
Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas.
R. Piva, R. Chiarle, A. D. Manazza, R. Taulli, W. Simmons, C. Ambrogio, V. D'Escamard, E. Pellegrino, C. Ponzetto, G. Palestro, et al. (2006)
Blood 107, 689-697
   Abstract »    Full Text »    PDF »
Combination Bcl-2 Antisense and Radiation Therapy for Nasopharyngeal Cancer.
K. W. Yip, J. D. Mocanu, P.Y. B. Au, G. T. Sleep, D. Huang, P. Busson, W.-C. Yeh, R. Gilbert, B. O'Sullivan, P. Gullane, et al. (2005)
Clin. Cancer Res. 11, 8131-8144
   Abstract »    Full Text »    PDF »
Oncogenes as molecular targets in lymphoma.
A. Hachem and R. B. Gartenhaus (2005)
Blood 106, 1911-1923
   Full Text »    PDF »
Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach.
J. S. Abramson and M. A. Shipp (2005)
Blood 106, 1164-1174
   Abstract »    Full Text »    PDF »
Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease.
O. Takeuchi, J. Fisher, H. Suh, H. Harada, B. A. Malynn, and S. J. Korsmeyer (2005)
PNAS 102, 11272-11277
   Abstract »    Full Text »    PDF »
New Approaches and Therapeutics Targeting Apoptosis in Disease.
U. Fischer and K. Schulze-Osthoff (2005)
Pharmacol. Rev. 57, 187-215
   Abstract »    Full Text »    PDF »
Solution Structure of Prosurvival Mcl-1 and Characterization of Its Binding by Proapoptotic BH3-only Ligands.
C. L. Day, L. Chen, S. J. Richardson, P. J. Harrison, D. C. S. Huang, and M. G. Hinds (2005)
J. Biol. Chem. 280, 4738-4744
   Abstract »    Full Text »    PDF »
2004: Signaling Breakthroughs of the Year.
E. M. Adler, N. R. Gough, and L. B. Ray (2005)
Sci. STKE 2005, eg1
   Abstract »    Full Text »    PDF »
Subversion of the Bcl-2 Life/Death Switch in Cancer Development and Therapy.
Cold Spring Harb Symp Quant Biol 70, 469-477
   Abstract »    PDF »
Modulating the Bcl-2 Family of Apoptosis Suppressors for Potential Therapeutic Benefit in Cancer.
G. C. Shore and J. Viallet (2005)
Hematology 2005, 226-230
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882