Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 305 (5690): 1629-1631

Copyright © 2004 by the American Association for the Advancement of Science

SOS Response Induction by ß-Lactams and Bacterial Defense Against Antibiotic Lethality

Christine Miller,1 Line Elnif Thomsen,2 Carina Gaggero,1* Ronen Mosseri,1{dagger} Hanne Ingmer,1,2{ddagger} Stanley N. Cohen1§

Abstract: The SOS response aids bacterial propagation by inhibiting cell division during repair of DNA damage. We report that inactivation of the ftsI gene product, penicillin binding protein 3, by either ß-lactam antibiotics or genetic mutation induces SOS in Escherichia coli through the DpiBA two-component signal transduction system. This event, which requires the SOS-promoting recA and lexA genes as well as dpiA, transiently halts bacterial cell division, enabling survival to otherwise lethal antibiotic exposure. Our findings reveal defective cell wall synthesis as an unexpected initiator of the bacterial SOS response, indicate that ß-lactam antibiotics are extracellular stimuli of this response, and demonstrate a novel mechanism for mitigation of antimicrobial lethality.

1 Department of Genetics, Stanford University, Stanford, CA 94305, USA.
2 Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Stigboejlen 4, Fredericksberg C, DK-1870, Denmark.

Back to Top

* Present address: Departamento de Biologia Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay.

{dagger} Present address: Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petah Tiqva 49202, Israel.

{ddagger} Present address: Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Stigboejlen 4, Frederiksberg C, DK-1870, Denmark.

§ To whom correspondence should be addressed. E-mail: sncohen{at}stanford.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.
R. Jothi, S. Balaji, A. Wuster, J. A. Grochow, J. Gsponer, T. M. Przytycka, L. Aravind, and M. M. Babu (2014)
Mol Syst Biol 5, 294
   Abstract »    Full Text »    PDF »
Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery.
A. Nautiyal, K. N. Patil, and K. Muniyappa (2014)
J. Antimicrob. Chemother.
   Abstract »    Full Text »    PDF »
Selective Target Inactivation Rather than Global Metabolic Dormancy Causes Antibiotic Tolerance in Uropathogens.
L. W. Goneau, N. S. Yeoh, K. W. MacDonald, P. A. Cadieux, J. P. Burton, H. Razvi, and G. Reid (2014)
Antimicrob. Agents Chemother. 58, 2089-2097
   Abstract »    Full Text »    PDF »
Metronidazole increases the emergence of ciprofloxacin- and amikacin-resistant Pseudomonas aeruginosa by inducing the SOS response.
D. Hocquet and X. Bertrand (2014)
J. Antimicrob. Chemother. 69, 852-854
   Full Text »    PDF »
DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks.
K. N. Kreuzer (2013)
Cold Spring Harb Perspect Biol 5, a012674
   Abstract »    Full Text »    PDF »
Compensation of the Metabolic Costs of Antibiotic Resistance by Physiological Adaptation in Escherichia coli.
N. Handel, J. M. Schuurmans, S. Brul, and B. H. ter Kuile (2013)
Antimicrob. Agents Chemother. 57, 3752-3762
   Abstract »    Full Text »    PDF »
The Staphylococcus aureus Thiol/Oxidative Stress Global Regulator Spx Controls trfA, a Gene Implicated in Cell Wall Antibiotic Resistance.
A. Jousselin, W. L. Kelley, C. Barras, D. P. Lew, and A. Renzoni (2013)
Antimicrob. Agents Chemother. 57, 3283-3292
   Abstract »    Full Text »    PDF »
Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?.
A. Beceiro, M. Tomas, and G. Bou (2013)
Clin. Microbiol. Rev. 26, 185-230
   Abstract »    Full Text »    PDF »
Antibiotic Resistance Acquired through a DNA Damage-Inducible Response in Acinetobacter baumannii.
M. D. Norton, A. J. Spilkia, and V. G. Godoy (2013)
J. Bacteriol. 195, 1335-1345
   Abstract »    Full Text »    PDF »
Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus.
W. Schroder, C. Goerke, and C. Wolz (2013)
J. Antimicrob. Chemother. 68, 529-538
   Abstract »    Full Text »    PDF »
Dynamic Persistence of Antibiotic-Stressed Mycobacteria.
Y. Wakamoto, N. Dhar, R. Chait, K. Schneider, F. Signorino-Gelo, S. Leibler, and J. D. McKinney (2013)
Science 339, 91-95
   Abstract »    Full Text »    PDF »
Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation.
A. Briales, J. M. Rodriguez-Martinez, C. Velasco, J. Machuca, P. Diaz de Alba, J. Blazquez, and A. Pascual (2012)
J. Antimicrob. Chemother. 67, 2854-2859
   Abstract »    Full Text »    PDF »
Screening for catalytically active Type II restriction endonucleases using segregation-induced methylation deficiency.
M. Ukanis, R. Sapranauskas, and A. Lubys (2012)
Nucleic Acids Res. 40, e149
   Abstract »    Full Text »    PDF »
Bacterial stress responses as determinants of antimicrobial resistance.
K. Poole (2012)
J. Antimicrob. Chemother. 67, 2069-2089
   Abstract »    Full Text »    PDF »
Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals.
S. S. Grant, B. B. Kaufmann, N. S. Chand, N. Haseley, and D. T. Hung (2012)
PNAS 109, 12147-12152
   Abstract »    Full Text »    PDF »
Induction of Mycobacterial Resistance to Quinolone Class Antimicrobials.
M. Malik, K. Chavda, X. Zhao, N. Shah, S. Hussain, N. Kurepina, B. N. Kreiswirth, R. J. Kerns, and K. Drlica (2012)
Antimicrob. Agents Chemother. 56, 3879-3887
   Abstract »    Full Text »    PDF »
CitA/CitB Two-Component System Regulating Citrate Fermentation in Escherichia coli and Its Relation to the DcuS/DcuR System In Vivo.
P. D. Scheu, J. Witan, M. Rauschmeier, S. Graf, Y.- F. Liao, A. Ebert-Jung, T. Basche, W. Erker, and G. Unden (2012)
J. Bacteriol. 194, 636-645
   Abstract »    Full Text »    PDF »
Answer to December 2011 Photo Quiz.
H. Johnson, E. M. Burd, and S. E. Sharp (2011)
J. Clin. Microbiol. 49, 4421
   Full Text »    PDF »
Quinolone Induction of qnrVS1 in Vibrio splendidus and Plasmid-Carried qnrS1 in Escherichia coli, a Mechanism Independent of the SOS System.
R. Okumura, C.-H. Liao, M. Gavin, G. A. Jacoby, and D. C. Hooper (2011)
Antimicrob. Agents Chemother. 55, 5942-5945
   Abstract »    Full Text »    PDF »
Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins.
C. A. Cagle, J. E. S. Shearer, and A. O. Summers (2011)
Microbiology 157, 2841-2853
   Abstract »    Full Text »    PDF »
Filamentous bacteria masquerading as fungi: a diagnostic pitfall in direct smear interpretation with report of two cases.
B. J. Sutton, A. C. Parsons, and E. L. Palavecino (2011)
J. Clin. Pathol. 64, 927-929
   Abstract »    Full Text »    PDF »
Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments.
Q. Zhang, G. Lambert, D. Liao, H. Kim, K. Robin, C.-k. Tung, N. Pourmand, and R. H. Austin (2011)
Science 333, 1764-1767
   Abstract »    Full Text »    PDF »
Fate of Mutation Rate Depends on agr Locus Expression during Oxacillin-Mediated Heterogeneous-Homogeneous Selection in Methicillin-Resistant Staphylococcus aureus Clinical Strains.
K. B. Plata, R. R. Rosato, and A. E. Rosato (2011)
Antimicrob. Agents Chemother. 55, 3176-3186
   Abstract »    Full Text »    PDF »
{beta}-Lactams Interfering with PBP1 Induce Panton-Valentine Leukocidin Expression by Triggering sarA and rot Global Regulators of Staphylococcus aureus.
O. Dumitrescu, P. Choudhury, S. Boisset, C. Badiou, M. Bes, Y. Benito, C. Wolz, F. Vandenesch, J. Etienne, A. L. Cheung, et al. (2011)
Antimicrob. Agents Chemother. 55, 3261-3271
   Abstract »    Full Text »    PDF »
Vibrio cholerae Triggers SOS and Mutagenesis in Response to a Wide Range of Antibiotics: a Route towards Multiresistance.
Z. Baharoglu and D. Mazel (2011)
Antimicrob. Agents Chemother. 55, 2438-2441
   Abstract »    Full Text »    PDF »
Deciphering the Mode of Action of the Synthetic Antimicrobial Peptide Bac8c.
E. C. Spindler, J. D. F. Hale, T. H. Giddings Jr., R. E. W. Hancock, and R. T. Gill (2011)
Antimicrob. Agents Chemother. 55, 1706-1716
   Abstract »    Full Text »    PDF »
Gene Expression Profiling of Corynebacterium glutamicum during Anaerobic Nitrate Respiration: Induction of the SOS Response for Cell Survival.
T. Nishimura, H. Teramoto, M. Inui, and H. Yukawa (2011)
J. Bacteriol. 193, 1327-1333
   Abstract »    Full Text »    PDF »
Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials.
T. D. Thi, E. Lopez, A. Rodriguez-Rojas, J. Rodriguez-Beltran, A. Couce, J. R. Guelfo, A. Castaneda-Garcia, and J. Blazquez (2011)
J. Antimicrob. Chemother. 66, 531-538
   Abstract »    Full Text »    PDF »
Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus.
M. T. Cohn, P. Kjelgaard, D. Frees, J. R. Penades, and H. Ingmer (2011)
Microbiology 157, 677-684
   Abstract »    Full Text »    PDF »
The role of Escherichia coli YrbB in the lethal action of quinolones.
X. Han, J. Geng, L. Zhang, and T. Lu (2011)
J. Antimicrob. Chemother. 66, 323-331
   Abstract »    Full Text »    PDF »
Essential Biological Processes of an Emerging Pathogen: DNA Replication, Transcription, and Cell Division in Acinetobacter spp..
A. Robinson, A. J. Brzoska, K. M. Turner, R. Withers, E. J. Harry, P. J. Lewis, and N. E. Dixon (2010)
Microbiol. Mol. Biol. Rev. 74, 273-297
   Abstract »    Full Text »    PDF »
Delineation of a Bacterial Starvation Stress Response Network Which Can Mediate Antibiotic Tolerance Development.
D. K. C. Fung, E. W. C. Chan, M. L. Chin, and R. C. Y. Chan (2010)
Antimicrob. Agents Chemother. 54, 1082-1093
   Abstract »    Full Text »    PDF »
Rapid {beta}-lactam-induced lysis requires successful assembly of the cell division machinery.
H. S. Chung, Z. Yao, N. W. Goehring, R. Kishony, J. Beckwith, and D. Kahne (2009)
PNAS 106, 21872-21877
   Abstract »    Full Text »    PDF »
A DinB variant reveals diverse physiological consequences of incomplete TLS extension by a Y-family DNA polymerase.
D. F. Jarosz, S. E. Cohen, J. C. Delaney, J. M. Essigmann, and G. C. Walker (2009)
PNAS 106, 21137-21142
   Abstract »    Full Text »    PDF »
LytM-Domain Factors Are Required for Daughter Cell Separation and Rapid Ampicillin-Induced Lysis in Escherichia coli.
T. Uehara, T. Dinh, and T. G. Bernhardt (2009)
J. Bacteriol. 191, 5094-5107
   Abstract »    Full Text »    PDF »
Effect of Subinhibitory Concentrations of Antibiotics on Intrachromosomal Homologous Recombination in Escherichia coli.
E. Lopez and J. Blazquez (2009)
Antimicrob. Agents Chemother. 53, 3411-3415
   Abstract »    Full Text »    PDF »
Development of homogeneous expression of resistance in methicillin-resistant Staphylococcus aureus clinical strains is functionally associated with a {beta}-lactam-mediated SOS response.
A. Cuirolo, K. Plata, and A. E. Rosato (2009)
J. Antimicrob. Chemother. 64, 37-45
   Abstract »    Full Text »    PDF »
Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy.
T. K. Lu and J. J. Collins (2009)
PNAS 106, 4629-4634
   Abstract »    Full Text »    PDF »
Vancomycin Heteroresistance and Methicillin-Resistant Staphylococcus aureus.
S. Deresinski (2009)
The Journal of Infectious Disease 199, 605-609
   Full Text »    PDF »
The Rcs Phosphorelay Is a Cell Envelope Stress Response Activated by Peptidoglycan Stress and Contributes to Intrinsic Antibiotic Resistance.
M. E. Laubacher and S. E. Ades (2008)
J. Bacteriol. 190, 2065-2074
   Abstract »    Full Text »    PDF »
Transcriptional Profiling Reveals that Daptomycin Induces the Staphylococcus aureus Cell Wall Stress Stimulon and Genes Responsive to Membrane Depolarization.
A. Muthaiyan, J. A. Silverman, R. K. Jayaswal, and B. J. Wilkinson (2008)
Antimicrob. Agents Chemother. 52, 980-990
   Abstract »    Full Text »    PDF »
Characterization of the SOS Regulon of Caulobacter crescentus.
R. P. da Rocha, A. C. de Miranda Paquola, M. do Valle Marques, C. F. M. Menck, and R. S. Galhardo (2008)
J. Bacteriol. 190, 1209-1218
   Abstract »    Full Text »    PDF »
Sensitivity of an Acinetobacter baylyi mpl Mutant to DNA Damage.
A. Chakravorty, M. Klovstad, G. Peterson, R. E. Lindeman, and L. A. Gregg-Jolly (2008)
Appl. Envir. Microbiol. 74, 1273-1275
   Abstract »    Full Text »    PDF »
The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response.
S. van der Veen, T. Hain, J. A. Wouters, H. Hossain, W. M. de Vos, T. Abee, T. Chakraborty, and M. H. J. Wells-Bennik (2007)
Microbiology 153, 3593-3607
   Abstract »    Full Text »    PDF »
Identification of a Novel Streptococcal Gene Cassette Mediating SOS Mutagenesis in Streptococcus uberis.
E. Varhimo, K. Savijoki, J. Jalava, O. P. Kuipers, and P. Varmanen (2007)
J. Bacteriol. 189, 5210-5222
   Abstract »    Full Text »    PDF »
Two Host-Induced Ralstonia solanacearum Genes, acrA and dinF, Encode Multidrug Efflux Pumps and Contribute to Bacterial Wilt Virulence.
D. G. Brown, J. K. Swanson, and C. Allen (2007)
Appl. Envir. Microbiol. 73, 2777-2786
   Abstract »    Full Text »    PDF »
SOS Regulation of the Type III Secretion System of Enteropathogenic Escherichia coli.
J. L. Mellies, K. R. Haack, and D. C. Galligan (2007)
J. Bacteriol. 189, 2863-2872
   Abstract »    Full Text »    PDF »
Effect of Antibiotics on Staphylococcus aureus Producing Panton-Valentine Leukocidin.
O. Dumitrescu, S. Boisset, C. Badiou, M. Bes, Y. Benito, M.-E. Reverdy, F. Vandenesch, J. Etienne, and G. Lina (2007)
Antimicrob. Agents Chemother. 51, 1515-1519
   Abstract »    Full Text »    PDF »
Antibiotic treatment in vitro of phenotypically tolerant bacterial populations.
C. Wiuff and D. I. Andersson (2007)
J. Antimicrob. Chemother. 59, 254-263
   Abstract »    Full Text »    PDF »
Complete and SOS-Mediated Response of Staphylococcus aureus to the Antibiotic Ciprofloxacin.
R. T. Cirz, M. B. Jones, N. A. Gingles, T. D. Minogue, B. Jarrahi, S. N. Peterson, and F. E. Romesberg (2007)
J. Bacteriol. 189, 531-539
   Abstract »    Full Text »    PDF »
Role of FtsEX in Cell Division of Escherichia coli: Viability of ftsEX Mutants Is Dependent on Functional SufI or High Osmotic Strength.
M. Reddy (2007)
J. Bacteriol. 189, 98-108
   Abstract »    Full Text »    PDF »
Filamentation by Escherichia coli subverts innate defenses during urinary tract infection.
S. S. Justice, D. A. Hunstad, P. C. Seed, and S. J. Hultgren (2006)
PNAS 103, 19884-19889
   Abstract »    Full Text »    PDF »
Rapid antibiotic sensitivity testing and trimethoprim-mediated filamentation of clinical isolates of the Enterobacteriaceae assayed on a novel porous culture support..
C. J. Ingham, M. van den Ende, P. C. Wever, and P. M. Schneeberger (2006)
J. Med. Microbiol. 55, 1511-1519
   Abstract »    Full Text »    PDF »
Defining the Pseudomonas aeruginosa SOS Response and Its Role in the Global Response to the Antibiotic Ciprofloxacin.
R. T. Cirz, B. M. O'Neill, J. A. Hammond, S. R. Head, and F. E. Romesberg (2006)
J. Bacteriol. 188, 7101-7110
   Abstract »    Full Text »    PDF »
Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae..
M. Prudhomme, L. Attaiech, G. Sanchez, B. Martin, and J.-P. Claverys (2006)
Science 313, 89-92
   Abstract »    Full Text »    PDF »
Tuberculosis Chemotherapy: the Influence of Bacillary Stress and Damage Response Pathways on Drug Efficacy.
D. F. Warner and V. Mizrahi (2006)
Clin. Microbiol. Rev. 19, 558-570
   Abstract »    Full Text »    PDF »
Role for Tandem Duplication and Lon Protease in AcrAB-TolC- Dependent Multiple Antibiotic Resistance (Mar) in an Escherichia coli Mutant without Mutations in marRAB or acrRAB.
H. Nicoloff, V. Perreten, L. M. McMurry, and S. B. Levy (2006)
J. Bacteriol. 188, 4413-4423
   Abstract »    Full Text »    PDF »
Effect of Chromate Stress on Escherichia coli K-12.
D. F. Ackerley, Y. Barak, S. V. Lynch, J. Curtin, and A. Matin (2006)
J. Bacteriol. 188, 3371-3381
   Abstract »    Full Text »    PDF »
{beta}-Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus.
E. Maiques, C. Ubeda, S. Campoy, N. Salvador, I. Lasa, R. P. Novick, J. Barbe, and J. R. Penades (2006)
J. Bacteriol. 188, 2726-2729
   Abstract »    Full Text »    PDF »
Exploitation of a beta-lactamase reporter gene fusion in the carbapenem antibiotic production operon to study adaptive evolution in Erwinia carotovora..
S. D. Bowden and G. P. C. Salmond (2006)
Microbiology 152, 1089-1097
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Cells Growing in Macrophages Are Filamentous and Deficient in FtsZ Rings.
A. Chauhan, M. V. V. S. Madiraju, M. Fol, H. Lofton, E. Maloney, R. Reynolds, and M. Rajagopalan (2006)
J. Bacteriol. 188, 1856-1865
   Abstract »    Full Text »    PDF »
Induction and Inhibition of Ciprofloxacin Resistance-Conferring Mutations in Hypermutator Bacteria.
R. T. Cirz and F. E. Romesberg (2006)
Antimicrob. Agents Chemother. 50, 220-225
   Abstract »    Full Text »    PDF »
Overexpression of the Hda DnaA-Related Protein in Escherichia coli Inhibits Multiplication, Affects Membrane Permeability, and Induces the SOS Response.
T. Banack, N. Clauson, N. Ogbaa, J. Villar, D. Oliver, and W. Firshein (2005)
J. Bacteriol. 187, 8507-8510
   Full Text »    PDF »
Roles of the Escherichia coli RecA Protein and the Global SOS Response in Effecting DNA Polymerase Selection In Vivo.
R. W. Maul and M. D. Sutton (2005)
J. Bacteriol. 187, 7607-7618
   Abstract »    Full Text »    PDF »
In the Literature.
D. Stan (2005)
Clinical Infectious Diseases 41, v-vi
   Full Text »    PDF »
Ancestral antibiotic resistance in Mycobacterium tuberculosis.
R. P. Morris, L. Nguyen, J. Gatfield, K. Visconti, K. Nguyen, D. Schnappinger, S. Ehrt, Y. Liu, L. Heifets, J. Pieters, et al. (2005)
PNAS 102, 12200-12205
   Abstract »    Full Text »    PDF »
Deletion of the Mycobacterium tuberculosis pknH Gene Confers a Higher Bacillary Load during the Chronic Phase of Infection in BALB/c Mice.
K. G. Papavinasasundaram, B. Chan, J.-H. Chung, M. J. Colston, E. O. Davis, and Y. Av-Gay (2005)
J. Bacteriol. 187, 5751-5760
   Abstract »    Full Text »    PDF »
Sublethal Concentrations of Ciprofloxacin Induce Bacteriocin Synthesis in Escherichia coli.
B. Jerman, M. Butala, and D. Zgur-Bertok (2005)
Antimicrob. Agents Chemother. 49, 3087-3090
   Abstract »    Full Text »    PDF »
Phenotypic Tolerance: Antibiotic Enrichment of Noninherited Resistance in Bacterial Populations.
C. Wiuff, R. M. Zappala, R. R. Regoes, K. N. Garner, F. Baquero, and B. R. Levin (2005)
Antimicrob. Agents Chemother. 49, 1483-1494
   Abstract »    Full Text »    PDF »
MICROBIOLOGY: Noninherited Resistance to Antibiotics.
B. R. Levin (2004)
Science 305, 1578-1579
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882