Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 305 (5692): 1937-1941

Copyright © 2004 by the American Association for the Advancement of Science

PHYTOCHROME-INTERACTING FACTOR 1 Is a Critical bHLH Regulator of Chlorophyll Biosynthesis

Enamul Huq,1,2 Bassem Al-Sady,2 Matthew Hudson,2 Chanhong Kim,3 Klaus Apel,3 Peter H. Quail2*

Abstract: Photosynthetic organisms must achieve a delicate balance between the light energy absorbed by chlorophyll and their capacity to channel that energy into productive photochemical reactions. Release of excess absorbed energy in the cell can cause lethal photooxidative damage. We identified a basic helix-loop-helix (bHLH) transcription factor, designated PHYTOCHROME-INTERACTING FACTOR 1 (PIF1), that negatively regulates chlorophyll biosynthesis. pif1 mutant seedlings accumulate excess free protochlorophyllide when grown in the dark, with consequent lethal bleaching upon exposure to light. PIF1 interacts specifically with the photoactivated conformer of phytochromes A and B, suggesting a signaling pathway by which chlorophyll biosynthetic rates are tightly controlled during the critical initial emergence of seedlings from subterranean darkness into sunlight.

1 Section of Molecular Cell and Developmental Biology and Institute of Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
2 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA and U.S. Department of Agriculture/Agricultural Research Service, Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA.
3 Institute of Plant Sciences, Swiss Federal Institute of Technology (ETH), Universitatstrasse 2, 8092 Zurich, Switzerland.

* To whom correspondence should be addressed. E-mail: quail{at}

PIF3 Is Involved in the Primary Root Growth Inhibition of Arabidopsis Induced by Nitric Oxide in the Light.
S. Bai, T. Yao, M. Li, X. Guo, Y. Zhang, S. Zhu, and Y. He (2014)
Mol Plant 7, 616-625
   Abstract »    Full Text »    PDF »
Arabidopsis VQ MOTIF-CONTAINING PROTEIN29 Represses Seedling Deetiolation by Interacting with PHYTOCHROME-INTERACTING FACTOR1.
Y. Li, Y. Jing, J. Li, G. Xu, and R. Lin (2014)
Plant Physiology 164, 2068-2080
   Abstract »    Full Text »    PDF »
Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
S. Zhong, H. Shi, C. Xue, N. Wei, H. Guo, and X. W. Deng (2014)
PNAS 111, 3913-3920
   Abstract »    Full Text »    PDF »
In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis.
B. Brouwer, P. Gardestrom, and O. Keech (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
PIF1 promotes phytochrome-regulated growth under photoperiodic conditions in Arabidopsis together with PIF3, PIF4, and PIF5.
J. Soy, P. Leivar, and E. Monte (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
PIFs: Systems Integrators in Plant Development.
P. Leivar and E. Monte (2014)
PLANT CELL 26, 56-78
   Abstract »    Full Text »    PDF »
Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in Arabidopsis.
W. Ni, S.-L. Xu, R. J. Chalkley, T. N. D. Pham, S. Guan, D. A. Maltby, A. L. Burlingame, Z.-Y. Wang, and P. H. Quail (2013)
PLANT CELL 25, 2679-2698
   Abstract »    Full Text »    PDF »
Antagonistic Basic Helix-Loop-Helix/bZIP Transcription Factors Form Transcriptional Modules That Integrate Light and Reactive Oxygen Species Signaling in Arabidopsis.
D. Chen, G. Xu, W. Tang, Y. Jing, Q. Ji, Z. Fei, and R. Lin (2013)
PLANT CELL 25, 1657-1673
   Abstract »    Full Text »    PDF »
PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings.
X. Liu, C.-Y. Chen, K.-C. Wang, M. Luo, R. Tai, L. Yuan, M. Zhao, S. Yang, G. Tian, Y. Cui, et al. (2013)
PLANT CELL 25, 1258-1273
   Abstract »    Full Text »    PDF »
WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5.
B. C. Willige, E. Ogiso-Tanaka, M. Zourelidou, and C. Schwechheimer (2012)
Development 139, 4020-4028
   Abstract »    Full Text »    PDF »
An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis.
Q.-F. Li, C. Wang, L. Jiang, S. Li, S. S. M. Sun, and J.-X. He (2012)
Science Signaling 5, ra72
   Abstract »    Full Text »    PDF »
Arabidopsis Defense against Botrytis cinerea: Chronology and Regulation Deciphered by High-Resolution Temporal Transcriptomic Analysis.
O. Windram, P. Madhou, S. McHattie, C. Hill, R. Hickman, E. Cooke, D. J. Jenkins, C. A. Penfold, L. Baxter, E. Breeze, et al. (2012)
PLANT CELL 24, 3530-3557
   Abstract »    Full Text »    PDF »
The Light-Response BTB1 and BTB2 Proteins Assemble Nuclear Ubiquitin Ligases That Modify Phytochrome B and D Signaling in Arabidopsis.
M. J. Christians, D. J. Gingerich, Z. Hua, T. D. Lauer, and R. D. Vierstra (2012)
Plant Physiology 160, 118-134
   Abstract »    Full Text »    PDF »
Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis.
Y.-M. Chang, W.-Y. Liu, A. C.-C. Shih, M.-N. Shen, C.-H. Lu, M.-Y. J. Lu, H.-W. Yang, T.-Y. Wang, S. C.- C. Chen, S. M. Chen, et al. (2012)
Plant Physiology 160, 165-177
   Abstract »    Full Text »    PDF »
Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis.
R. M. Galvao, M. Li, S. M. Kothadia, J. D. Haskel, P. V. Decker, E. K. Van Buskirk, and M. Chen (2012)
Genes & Dev. 26, 1851-1863
   Abstract »    Full Text »    PDF »
Arabidopsis Phytochrome A Is Modularly Structured to Integrate the Multiple Features That Are Required for a Highly Sensitized Phytochrome.
Y. Oka, Y. Ono, G. Toledo-Ortiz, K. Kokaji, M. Matsui, N. Mochizuki, and A. Nagatani (2012)
PLANT CELL 24, 2949-2962
   Abstract »    Full Text »    PDF »
Interactions between HLH and bHLH Factors Modulate Light-Regulated Plant Development.
Y. Hao, E. Oh, G. Choi, Z. Liang, and Z.-Y. Wang (2012)
Mol Plant 5, 688-697
   Abstract »    Full Text »    PDF »
MAX2 Affects Multiple Hormones to Promote Photomorphogenesis.
H. Shen, L. Zhu, Q.-Y. Bu, and E. Huq (2012)
Mol Plant 5, 750-762
   Abstract »    Full Text »    PDF »
Phytochrome Signaling in Green Arabidopsis Seedlings: Impact Assessment of a Mutually Negative phyB-PIF Feedback Loop.
P. Leivar, E. Monte, M. M. Cohn, and P. H. Quail (2012)
Mol Plant 5, 734-749
   Abstract »    Full Text »    PDF »
Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating HEMB1 during Deetiolation in Arabidopsis.
W. Tang, W. Wang, D. Chen, Q. Ji, Y. Jing, H. Wang, and R. Lin (2012)
PLANT CELL 24, 1984-2000
   Abstract »    Full Text »    PDF »
Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis.
P. Leivar, J. M. Tepperman, M. M. Cohn, E. Monte, B. Al-Sady, E. Erickson, and P. H. Quail (2012)
PLANT CELL 24, 1398-1419
   Abstract »    Full Text »    PDF »
Phytochrome regulates translation of mRNA in the cytosol.
I. Paik, S. Yang, and G. Choi (2012)
PNAS 109, 1335-1340
   Abstract »    Full Text »    PDF »
Functional Profiling Identifies Genes Involved in Organ-Specific Branches of the PIF3 Regulatory Network in Arabidopsis.
M. Sentandreu, G. Martin, N. Gonzalez-Schain, P. Leivar, J. Soy, J. M. Tepperman, P. H. Quail, and E. Monte (2011)
PLANT CELL 23, 3974-3991
   Abstract »    Full Text »    PDF »
Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in Arabidopsis Development.
X. Ouyang, J. Li, G. Li, B. Li, B. Chen, H. Shen, X. Huang, X. Mo, X. Wan, R. Lin, et al. (2011)
PLANT CELL 23, 2514-2535
   Abstract »    Full Text »    PDF »
A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.
X. Wang, I. Roig-Villanova, S. Khan, H. Shanahan, P. H. Quail, J. F. Martinez-Garcia, and P. F. Devlin (2011)
J. Exp. Bot. 62, 2973-2987
   Abstract »    Full Text »    PDF »
DELLAs Regulate Chlorophyll and Carotenoid Biosynthesis to Prevent Photooxidative Damage during Seedling Deetiolation in Arabidopsis.
S. Cheminant, M. Wild, F. Bouvier, S. Pelletier, J.-P. Renou, M. Erhardt, S. Hayes, M. J. Terry, P. Genschik, and P. Achard (2011)
PLANT CELL 23, 1849-1860
   Abstract »    Full Text »    PDF »
GUN4-Porphyrin Complexes Bind the ChlH/GUN5 Subunit of Mg-Chelatase and Promote Chlorophyll Biosynthesis in Arabidopsis.
N. D. Adhikari, J. E. Froehlich, D. D. Strand, S. M. Buck, D. M. Kramer, and R. M. Larkin (2011)
PLANT CELL 23, 1449-1467
   Abstract »    Full Text »    PDF »
Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors.
K. Kim, J. Shin, S.-H. Lee, H.-S. Kweon, J. N. Maloof, and G. Choi (2011)
PNAS 108, 1729-1734
   Abstract »    Full Text »    PDF »
Implication of the oep16-1 Mutation in a flu-Independent, Singlet Oxygen-Regulated Cell Death Pathway in Arabidopsis thaliana.
I. Samol, F. Buhr, A. Springer, S. Pollmann, A. Lahroussi, C. Rossig, D. von Wettstein, C. Reinbothe, and S. Reinbothe (2011)
Plant Cell Physiol. 52, 84-95
   Abstract »    Full Text »    PDF »
Optimizing Antenna Size to Maximize Photosynthetic Efficiency.
D. R. Ort, X. Zhu, and A. Melis (2011)
Plant Physiology 155, 79-85
   Full Text »    PDF »
Arabidopsis Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling.
J. Li, G. Li, S. Gao, C. Martinez, G. He, Z. Zhou, X. Huang, J.-H. Lee, H. Zhang, Y. Shen, et al. (2010)
PLANT CELL 22, 3634-3649
   Abstract »    Full Text »    PDF »
Arabidopsis PHYTOCHROME INTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1 E3 Ligase in the Nucleus.
I.-C. Jang, R. Henriques, H. S. Seo, A. Nagatani, and N.-H. Chua (2010)
PLANT CELL 22, 2370-2383
   Abstract »    Full Text »    PDF »
Arabidopsis thaliana life without phytochromes.
B. Strasser, M. Sanchez-Lamas, M. J. Yanovsky, J. J. Casal, and P. D. Cerdan (2010)
PNAS 107, 4776-4781
   Abstract »    Full Text »    PDF »
The Arabidopsis Floral Homeotic Proteins APETALA3 and PISTILLATA Negatively Regulate the BANQUO Genes Implicated in Light Signaling.
C. D. Mara, T. Huang, and V. F. Irish (2010)
PLANT CELL 22, 690-702
   Abstract »    Full Text »    PDF »
Phytochrome functions in Arabidopsis development.
K. A. Franklin and P. H. Quail (2010)
J. Exp. Bot. 61, 11-24
   Abstract »    Full Text »    PDF »
Phytochrome B Is Involved in Mediating Red Light-Induced Stomatal Opening in Arabidopsis thaliana.
F.-F. Wang, H.-L. Lian, C.-Y. Kang, and H.-Q. Yang (2010)
Mol Plant 3, 246-259
   Abstract »    Full Text »    PDF »
BLADE-ON-PETIOLE1 Coordinates Organ Determinacy and Axial Polarity in Arabidopsis by Directly Activating ASYMMETRIC LEAVES2.
J. H. Jun, C. M. Ha, and J. C. Fletcher (2010)
PLANT CELL 22, 62-76
   Abstract »    Full Text »    PDF »
EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings.
S. Zhong, M. Zhao, T. Shi, H. Shi, F. An, Q. Zhao, and H. Guo (2009)
PNAS 106, 21431-21436
   Abstract »    Full Text »    PDF »
Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings.
P. Leivar, J. M. Tepperman, E. Monte, R. H. Calderon, T. L. Liu, and P. H. Quail (2009)
PLANT CELL 21, 3535-3553
   Abstract »    Full Text »    PDF »
Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis.
C.-Y. Kang, H.-L. Lian, F.-F. Wang, J.-R. Huang, and H.-Q. Yang (2009)
PLANT CELL 21, 2624-2641
   Abstract »    Full Text »    PDF »
Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity.
U. Piskurewicz, V. Tureckova, E. Lacombe, and L. Lopez-Molina (2009)
EMBO J. 28, 2259-2271
   Abstract »    Full Text »    PDF »
Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley.
D. Khandal, I. Samol, F. Buhr, S. Pollmann, H. Schmidt, S. Clemens, S. Reinbothe, and C. Reinbothe (2009)
PNAS 106, 13112-13117
   Abstract »    Full Text »    PDF »
PIF3 is a repressor of chloroplast development.
P. G. Stephenson, C. Fankhauser, and M. J. Terry (2009)
PNAS 106, 7654-7659
   Abstract »    Full Text »    PDF »
Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors.
J. Shin, K. Kim, H. Kang, I. S. Zulfugarov, G. Bae, C.-H. Lee, D. Lee, and G. Choi (2009)
PNAS 106, 7660-7665
   Abstract »    Full Text »    PDF »
Blue Light Induces Degradation of the Negative Regulator Phytochrome Interacting Factor 1 to Promote Photomorphogenic Development of Arabidopsis Seedlings.
A. Castillon, H. Shen, and E. Huq (2009)
Genetics 182, 161-171
   Abstract »    Full Text »    PDF »
Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination.
A. Fukushima, M. Kusano, N. Nakamichi, M. Kobayashi, N. Hayashi, H. Sakakibara, T. Mizuno, and K. Saito (2009)
PNAS 106, 7251-7256
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of Genes Targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during Seed Germination in Arabidopsis.
E. Oh, H. Kang, S. Yamaguchi, J. Park, D. Lee, Y. Kamiya, and G. Choi (2009)
PLANT CELL 21, 403-419
   Abstract »    Full Text »    PDF »
Role of root UV-B sensing in Arabidopsis early seedling development.
H. Tong, C. D. Leasure, X. Hou, G. Yuen, W. Briggs, and Z.-H. He (2008)
PNAS 105, 21039-21044
   Abstract »    Full Text »    PDF »
Discrete and Essential Roles of the Multiple Domains of Arabidopsis FHY3 in Mediating Phytochrome A Signal Transduction.
R. Lin, Y. Teng, H.-J. Park, L. Ding, C. Black, P. Fang, and H. Wang (2008)
Plant Physiology 148, 981-992
   Abstract »    Full Text »    PDF »
Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation.
M. Moulin, A. C. McCormac, M. J. Terry, and A. G. Smith (2008)
PNAS 105, 15178-15183
   Abstract »    Full Text »    PDF »
The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis.
N. Mochizuki, R. Tanaka, A. Tanaka, T. Masuda, and A. Nagatani (2008)
PNAS 105, 15184-15189
   Abstract »    Full Text »    PDF »
LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-Box Protein Involved in Light-Dependent Development and Gene Expression, Undergoes COP1-Mediated Ubiquitination.
S. Datta, H. Johansson, C. Hettiarachchi, M. L. Irigoyen, M. Desai, V. Rubio, and M. Holm (2008)
PLANT CELL 20, 2324-2338
   Abstract »    Full Text »    PDF »
The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes.
P. A. Manavella, C. A. Dezar, F. D. Ariel, M. F. Drincovich, and R. L. Chan (2008)
J. Exp. Bot. 59, 3143-3155
   Abstract »    Full Text »    PDF »
PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis.
J. Moon, L. Zhu, H. Shen, and E. Huq (2008)
PNAS 105, 9433-9438
   Abstract »    Full Text »    PDF »
Light-Induced Phosphorylation and Degradation of the Negative Regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis Depend upon Its Direct Physical Interactions with Photoactivated Phytochromes.
H. Shen, L. Zhu, A. Castillon, M. Majee, B. Downie, and E. Huq (2008)
PLANT CELL 20, 1586-1602
   Abstract »    Full Text »    PDF »
SOMNUS, a CCCH-Type Zinc Finger Protein in Arabidopsis, Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5.
D. H. Kim, S. Yamaguchi, S. Lim, E. Oh, J. Park, A. Hanada, Y. Kamiya, and G. Choi (2008)
PLANT CELL 20, 1260-1277
   Abstract »    Full Text »    PDF »
Mechanistic duality of transcription factor function in phytochrome signaling.
B. Al-Sady, E. A. Kikis, E. Monte, and P. H. Quail (2008)
PNAS 105, 2232-2237
   Abstract »    Full Text »    PDF »
The Arabidopsis Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels.
P. Leivar, E. Monte, B. Al-Sady, C. Carle, A. Storer, J. M. Alonso, J. R. Ecker, and P. H. Quail (2008)
PLANT CELL 20, 337-352
   Abstract »    Full Text »    PDF »
Role of Arabidopsis RAP2.4 in Regulating Light- and Ethylene-Mediated Developmental Processes and Drought Stress Tolerance.
R.-C. Lin, H.-J. Park, and H.-Y. Wang (2008)
Mol Plant 1, 42-57
   Abstract »    Full Text »    PDF »
Blue-Light-Independent Activity of Arabidopsis Cryptochromes in the Regulation of Steady-State Levels of Protein and mRNA Expression.
Y.-J. Yang, Z.-C. Zuo, X.-Y. Zhao, X. Li, J. Klejnot, Y. Li, P. Chen, S.-P. Liang, X.-H. Yu, X.-M. Liu, et al. (2008)
Mol Plant 1, 167-177
   Abstract »    Full Text »    PDF »
The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms.
R. Khanna, Y. Shen, C. M. Marion, A. Tsuchisaka, A. Theologis, E. Schafer, and P. H. Quail (2007)
PLANT CELL 19, 3915-3929
   Abstract »    Full Text »    PDF »
The F-Box Protein MAX2 Functions as a Positive Regulator of Photomorphogenesis in Arabidopsis.
H. Shen, P. Luong, and E. Huq (2007)
Plant Physiology 145, 1471-1483
   Abstract »    Full Text »    PDF »
Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins.
I. Roig-Villanova, J. Bou-Torrent, A. Galstyan, L. Carretero-Paulet, S. Portoles, M. Rodriguez-Concepcion, and J. F. Martinez-Garcia (2007)
EMBO J. 26, 4756-4767
   Abstract »    Full Text »    PDF »
Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation.
Y. Shen, R. Khanna, C. M. Carle, and P. H. Quail (2007)
Plant Physiology 145, 1043-1051
   Abstract »    Full Text »    PDF »
LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins.
A. Husbands, E. M. Bell, B. Shuai, H. M.S. Smith, and P. S. Springer (2007)
Nucleic Acids Res. 35, 6663-6671
   Abstract »    Full Text »    PDF »
Out of the dark: how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling.
E. Monte, B. Al-Sady, P. Leivar, and P. H. Quail (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
PIL5, a Phytochrome-Interacting bHLH Protein, Regulates Gibberellin Responsiveness by Binding Directly to the GAI and RGA Promoters in Arabidopsis Seeds.
E. Oh, S. Yamaguchi, J. Hu, J. Yusuke, B. Jung, I. Paik, H.-S. Lee, T.-p. Sun, Y. Kamiya, and G. Choi (2007)
PLANT CELL 19, 1192-1208
   Abstract »    Full Text »    PDF »
Glutathione S-Transferase Interacting with Far-Red Insensitive 219 Is Involved in Phytochrome A-Mediated Signaling in Arabidopsis.
I.-C. Chen, I-C. Huang, M.-J. Liu, Z.-G. Wang, S.-S. Chung, and H.-L. Hsieh (2007)
Plant Physiology 143, 1189-1202
   Abstract »    Full Text »    PDF »
FHY1 and FHL Act Together to Mediate Nuclear Accumulation of the Phytochrome A Photoreceptor.
A. Hiltbrunner, A. Tscheuschler, A. Viczian, T. Kunkel, S. Kircher, and E. Schafer (2006)
Plant Cell Physiol. 47, 1023-1034
   Abstract »    Full Text »    PDF »
Identification of Primary Target Genes of Phytochrome Signaling. Early Transcriptional Control during Shade Avoidance Responses in Arabidopsis.
I. Roig-Villanova, J. Bou, C. Sorin, P. F. Devlin, and J. F. Martinez-Garcia (2006)
Plant Physiology 141, 85-96
   Abstract »    Full Text »    PDF »
Arabidopsis CONSTANS-LIKE3 Is a Positive Regulator of Red Light Signaling and Root Growth.
S. Datta, G.H.C.M. Hettiarachchi, X.-W. Deng, and M. Holm (2006)
PLANT CELL 18, 70-84
   Abstract »    Full Text »    PDF »
Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis.
Y. Jiao, L. Ma, E. Strickland, and X. W. Deng (2005)
PLANT CELL 17, 3239-3256
   Abstract »    Full Text »    PDF »
Arabidopsis FHY1 Protein Stability Is Regulated by Light via Phytochrome A and 26S Proteasome.
Y. Shen, S. Feng, L. Ma, R. Lin, L.-J. Qu, Z. Chen, H. Wang, and X. W. Deng (2005)
Plant Physiology 139, 1234-1243
   Abstract »    Full Text »    PDF »
Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis.
J. Yang, R. Lin, J. Sullivan, U. Hoecker, B. Liu, L. Xu, X. W. Deng, and H. Wang (2005)
PLANT CELL 17, 804-821
   Abstract »    Full Text »    PDF »
A Novel Molecular Recognition Motif Necessary for Targeting Photoactivated Phytochrome Signaling to Specific Basic Helix-Loop-Helix Transcription Factors.
R. Khanna, E. Huq, E. A. Kikis, B. Al-Sady, C. Lanzatella, and P. H. Quail (2004)
PLANT CELL 16, 3033-3044
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882