Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5693): 124-129

Copyright © 2004 by the American Association for the Advancement of Science

Src Mediates a Switch from Microtubule- to Actin-Based Motility of Vaccinia Virus

Timothy P. Newsome, Niki Scaplehorn, Michael Way*

Abstract: The cascade of events that leads to vaccinia-induced actin polymerization requires Src-dependent tyrosine phosphorylation of the viral membrane protein A36R. We found that a localized outside-in signaling cascade induced by the viral membrane protein B5R is required to potently activate Src and induce A36R phosphorylation at the plasma membrane. In addition, Src-mediated phosphorylation of A36R regulated the ability of virus particles to recruit and release conventional kinesin. Thus, Src activity regulates the transition between cytoplasmic microtubule transport and actin-based motility at the plasma membrane.

Cell Motility Laboratory, Room 529, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.

* To whom correspondence should be addressed. E-mail: michael.way{at}cancer.org.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation.
A. C. Humphries, S. K. Donnelly, and M. Way (2014)
J. Cell Sci. 127, 673-685
   Abstract »    Full Text »    PDF »
The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility.
D. E. Alvarez and H. Agaisse (2013)
J. Cell Biol. 202, 1075-1090
   Abstract »    Full Text »    PDF »
Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions.
V. Doceul, M. Hollinshead, A. Breiman, K. Laval, and G. L. Smith (2012)
J. Gen. Virol. 93, 1876-1886
   Abstract »    Full Text »    PDF »
The A33-Dependent Incorporation of B5 into Extracellular Enveloped Vaccinia Virions Is Mediated through an Interaction between Their Lumenal Domains.
W. M. Chan and B. M. Ward (2012)
J. Virol. 86, 8210-8220
   Abstract »    Full Text »    PDF »
Increased Interaction between Vaccinia Virus Proteins A33 and B5 Is Detrimental to Infectious Extracellular Enveloped Virion Production.
W. M. Chan and B. M. Ward (2012)
J. Virol. 86, 8232-8244
   Abstract »    Full Text »    PDF »
Loss of Cytoskeletal Transport during Egress Critically Attenuates Ectromelia Virus Infection In Vivo.
H. Lynn, J. Horsington, L. K. Ter, S. Han, Y. L. Chew, R. J. Diefenbach, M. Way, G. Chaudhri, G. Karupiah, and T. P. Newsome (2012)
J. Virol. 86, 7427-7443
   Abstract »    Full Text »    PDF »
Modulation of the Myxoma Virus Plaque Phenotype by Vaccinia Virus Protein F11.
C. R. Irwin and D. H. Evans (2012)
J. Virol. 86, 7167-7179
   Abstract »    Full Text »    PDF »
Mouse Norovirus 1 Utilizes the Cytoskeleton Network To Establish Localization of the Replication Complex Proximal to the Microtubule Organizing Center.
J. L. Hyde, L. K. Gillespie, and J. M. Mackenzie (2012)
J. Virol. 86, 4110-4122
   Abstract »    Full Text »    PDF »
Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5.
M. M. Lorenzo, J. M. Sanchez-Puig, and R. Blasco (2012)
J. Gen. Virol. 93, 733-743
   Abstract »    Full Text »    PDF »
An Overview of the Vaccinia Virus Infectome: a Survey of the Proteins of the Poxvirus-Infected Cell.
W. Chou, T. Ngo, and P. D. Gershon (2012)
J. Virol. 86, 1487-1499
   Abstract »    Full Text »    PDF »
A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome.
M. P. Dodding, R. Mitter, A. C. Humphries, and M. Way (2011)
EMBO J. 30, 4523-4538
   Abstract »    Full Text »    PDF »
Single-Virus Tracking in Live Cells.
M. J. Rust, M. Lakadamyali, B. Brandenburg, and X. Zhuang (2011)
Cold Spring Harb Protoc 2011, pdb.top065623
   Abstract »    Full Text »    PDF »
Coupling viruses to dynein and kinesin-1.
M. P. Dodding and M. Way (2011)
EMBO J. 30, 3527-3539
   Abstract »    Full Text »    PDF »
The Host Phosphoinositide 5-Phosphatase SHIP2 Regulates Dissemination of Vaccinia Virus.
S. McNulty, K. Powell, C. Erneux, and D. Kalman (2011)
J. Virol. 85, 7402-7410
   Abstract »    Full Text »    PDF »
Diverse Requirements for Src-Family Tyrosine Kinases Distinguish Chlamydial Species.
J. Mital and T. Hackstadt (2011)
mBio 2, e00031-11
   Abstract »    Full Text »    PDF »
Requirement for Formin-Induced Actin Polymerization during Spread of Shigella flexneri.
J. E. Heindl, I. Saran, C.-r. Yi, C. F. Lesser, and M. B. Goldberg (2010)
Infect. Immun. 78, 193-203
   Abstract »    Full Text »    PDF »
Poxvirus Proteomics and Virus-Host Protein Interactions.
K. Van Vliet, M. R. Mohamed, L. Zhang, N. Y. Villa, S. J. Werden, J. Liu, and G. McFadden (2009)
Microbiol. Mol. Biol. Rev. 73, 730-749
   Abstract »    Full Text »    PDF »
The Src Kinase Lck Facilitates Assembly of HIV-1 at the Plasma Membrane.
A. B. Strasner, M. Natarajan, T. Doman, D. Key, A. August, and A. J. Henderson (2008)
J. Immunol. 181, 3706-3713
   Abstract »    Full Text »    PDF »
Host-Directed Drug Targeting of Factors Hijacked by Pathogens.
A. Schwegmann and F. Brombacher (2008)
Science Signaling 1, re8
   Abstract »    Full Text »    PDF »
Activation of p61Hck Triggers WASp- and Arp2/3-dependent Actin-comet Tail Biogenesis and Accelerates Lysosomes.
C. Vincent, I. Maridonneau-Parini, C. Le Clainche, P. Gounon, and A. Labrousse (2007)
J. Biol. Chem. 282, 19565-19574
   Abstract »    Full Text »    PDF »
Kidins220/ARMS Is Transported by a Kinesin-1-based Mechanism Likely to be Involved in Neuronal Differentiation.
A. Bracale, F. Cesca, V. E. Neubrand, T. P. Newsome, M. Way, and G. Schiavo (2007)
Mol. Biol. Cell 18, 142-152
   Abstract »    Full Text »    PDF »
The Spread of Rice Dwarf Virus among Cells of Its Insect Vector Exploits Virus-Induced Tubular Structures.
T. Wei, A. Kikuchi, Y. Moriyasu, N. Suzuki, T. Shimizu, K. Hagiwara, H. Chen, M. Takahashi, T. Ichiki-Uehara, and T. Omura (2006)
J. Virol. 80, 8593-8602
   Abstract »    Full Text »    PDF »
Interaction between Vaccinia Virus Extracellular Virus Envelope A33 and B5 Glycoproteins.
B. Perdiguero and R. Blasco (2006)
J. Virol. 80, 8763-8777
   Abstract »    Full Text »    PDF »
LC16m8, a Highly Attenuated Vaccinia Virus Vaccine Lacking Expression of the Membrane Protein B5R, Protects Monkeys from Monkeypox.
M. Saijo, Y. Ami, Y. Suzaki, N. Nagata, N. Iwata, H. Hasegawa, M. Ogata, S. Fukushi, T. Mizutani, T. Sata, et al. (2006)
J. Virol. 80, 5179-5188
   Abstract »    Full Text »    PDF »
Signaling During Pathogen Infection.
S. Munter, M. Way, and F. Frischknecht (2006)
Sci. STKE 2006, re5
   Abstract »    Full Text »    PDF »
Aggresomes and autophagy generate sites for virus replication..
T. Wileman (2006)
Science 312, 875-878
   Abstract »    Full Text »    PDF »
Vaccinia Virus Proteome: Identification of Proteins in Vaccinia Virus Intracellular Mature Virion Particles.
C.-S. Chung, C.-H. Chen, M.-Y. Ho, C.-Y. Huang, C.-L. Liao, and W. Chang (2006)
J. Virol. 80, 2127-2140
   Abstract »    Full Text »    PDF »
Towards an understanding of kinesin-1 dependent transport pathways through the study of protein-protein interactions.
J. G. Gindhart (2006)
Briefings in Functional Genomics 5, 74-86
   Abstract »    Full Text »    PDF »
The Src Family Kinase c-Yes Is Required for Maturation of West Nile Virus Particles.
A. J. Hirsch, G. R. Medigeshi, H. L. Meyers, V. DeFilippis, K. Fruh, T. Briese, W. I. Lipkin, and J. A. Nelson (2005)
J. Virol. 79, 11943-11951
   Abstract »    Full Text »    PDF »
Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread.
H. W. Favoreel, G. Van Minnebruggen, D. Adriaensen, and H. J. Nauwynck (2005)
PNAS 102, 8990-8995
   Abstract »    Full Text »    PDF »
Nef from pathogenic simian immunodeficiency virus is a negative factor for vaccinia virus.
K. S. Chan, P. H. Verardi, F. A. Legrand, and T. D. Yilma (2005)
PNAS 102, 8734-8739
   Abstract »    Full Text »    PDF »
Epitope-Mapping Studies Define Two Major Neutralization Sites on the Vaccinia Virus Extracellular Enveloped Virus Glycoprotein B5R.
L. Aldaz-Carroll, J. C. Whitbeck, M. Ponce de Leon, H. Lou, L. Hirao, S. N. Isaacs, B. Moss, R. J. Eisenberg, and G. H. Cohen (2005)
J. Virol. 79, 6260-6271
   Abstract »    Full Text »    PDF »
Microbial strategies to exploit host cells: Meeting on Spatial and Temporal Dynamics of the Endomembrane System.
V. Marjomaki and U. E. Schaible (2005)
EMBO Rep. 6, 408-412
   Full Text »    PDF »
Viral trafficking violations in axons: The herpesvirus case.
U. F. Greber (2005)
PNAS 102, 5639-5640
   Full Text »    PDF »
Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8.
M. Kidokoro, M. Tashiro, and H. Shida (2005)
PNAS 102, 4152-4157
   Abstract »    Full Text »    PDF »
VIROLOGY: Enhanced: Src Launches Vaccinia.
A. Hall (2004)
Science 306, 65-67
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882