Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5693): 129-131

Copyright © 2004 by the American Association for the Advancement of Science

Nonvisual Photoreception in the Chick Iris

Daniel C. Tu,1 Matthew L. Batten,3 Krzysztof Palczewski,3,4 Russell N. Van Gelder1,2*

Abstract: The embryonic chicken iris constricts to light ex vivo, but with characteristics atypical of visual phototransduction. The chick iris was most sensitive to short-wavelength light, demonstrating an action spectrum consistent with cryptochrome rather than with opsin pigments. Pupillary responses did not attenuate after saturating light exposure, but showed paradoxical potentiation. Iris photosensitivity was not affected by retinoid depletion or inhibitors of visual phototransduction. Knockdown of cryptochrome expression, but not of melanopsin expression, decreased iris photosensitivity. These data characterize a non-opsin photoreception mechanism in a vertebrate eye and suggest a conserved photoreceptive role for cryptochromes in vertebrates.

1 Department of Ophthalmology and Visual Sciences, Washington University Medical School, St. Louis, MO 63110 USA.
2 Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110 USA.
3 Department of Ophthalmology, University of Washington, Seattle, WA 98195 USA.
4 Departments of Pharmacology and Chemistry, University of Washington, Seattle, WA 98195 USA.

* To whom correspondence should be addressed. E-mail: Vangelder{at}vision.wustl.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cryptochrome expression in the eye of migratory birds depends on their migratory status.
L. Fusani, C. Bertolucci, E. Frigato, and A. Foa (2014)
J. Exp. Biol. 217, 918-923
   Abstract »    Full Text »    PDF »
Light-dependent Structural Change of Chicken Retinal Cryptochrome4.
R. Watari, C. Yamaguchi, W. Zemba, Y. Kubo, K. Okano, and T. Okano (2012)
J. Biol. Chem. 287, 42634-42641
   Abstract »    Full Text »    PDF »
Stimulus-Specific Pupil Dynamics Measured in Birds (Gallus gallus domesticus) In Vivo with Ultrahigh Resolution Optical Coherence Tomography.
A. A. Moayed, V. Choh, S. Hariri, C. Liu, A. Wong, and K. Bizheva (2012)
Invest. Ophthalmol. Vis. Sci. 53, 6863-6869
   Abstract »    Full Text »    PDF »
Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo.
T. J. Sexton, M. Golczak, K. Palczewski, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 20888-20897
   Abstract »    Full Text »    PDF »
A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception?.
J. B. Phillips, R. Muheim, and P. E. Jorge (2010)
J. Exp. Biol. 213, 3247-3255
   Abstract »    Full Text »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Evaluation of 9-cis-Retinyl Acetate Therapy in Rpe65-/- Mice.
T. Maeda, A. Maeda, G. Casadesus, K. Palczewski, and P. Margaron (2009)
Invest. Ophthalmol. Vis. Sci. 50, 4368-4378
   Abstract »    Full Text »    PDF »
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
K. Hitomi, L. DiTacchio, A. S. Arvai, J. Yamamoto, S.-T. Kim, T. Todo, J. A. Tainer, S. Iwai, S. Panda, and E. D. Getzoff (2009)
PNAS 106, 6962-6967
   Abstract »    Full Text »    PDF »
A nonmammalian vertebrate model of blindness reveals functional photoreceptors in the inner retina.
D. J. Valdez, P. S. Nieto, E. Garbarino-Pico, L. B. Avalle, H. Diaz-Fajreldines, C. Schurrer, K. M. Cheng, and M. E. Guido (2009)
FASEB J 23, 1186-1195
   Abstract »    Full Text »    PDF »
Action Spectrum of Drosophila Cryptochrome.
S. J. VanVickle-Chavez and R. N. Van Gelder (2007)
J. Biol. Chem. 282, 10561-10566
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Structure and Function of Animal Cryptochromes.
N. Ozturk, S.-H. Song, S. Ozgur, C. P. Selby, L. Morrison, C. Partch, D. Zhong, and A. Sancar (2007)
Cold Spring Harb Symp Quant Biol 72, 119-131
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882