Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5696): 644-647

Copyright © 2004 by the American Association for the Advancement of Science

Gene Order and Dynamic Domains

Steven T. Kosak1, and Mark Groudine1,2*

Abstract: When considering the daunting complexity of eukaryotic genomes, some comfort can be found in the fact that the human genome may contain only 30,000 to 40,000 genes. Moreover, growing evidence suggests that genomes may be organized in such a way as to take advantage of space. A gene's location in the linear DNA sequence and its position in the three-dimensional nucleus can both be important in its regulation. Contrary to prevailing notions in this postgenomic era, the bacteriophage {lambda}, a paragon of simplicity, may still have a few things to teach us with respect to these facets of nonrandom genomes.

1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
2 Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA.

Back to Top

Note added in proof: A recent study has provided evidence for the colocalization of coregulated genes on the same chromosome (35).

* To whom correspondence should be addressed. E-mail: markg{at}fhcrc.org


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Networking the nucleus.
I. Rajapakse, D. Scalzo, S. J. Tapscott, S. T. Kosak, and M. Groudine (2014)
Mol Syst Biol 6, 395
   Abstract »    Full Text »    PDF »
Noise in timing and precision of gene activities in a genetic cascade.
A. Amir, O. Kobiler, A. Rokney, A. B. Oppenheim, and J. Stavans (2014)
Mol Syst Biol 3, 71
   Abstract »    Full Text »    PDF »
Quantitative analysis of genomic element interactions by molecular colony technique.
A. A. Gavrilov, H. V. Chetverina, E. S. Chermnykh, S. V. Razin, and A. B. Chetverin (2014)
Nucleic Acids Res. 42, e36
   Abstract »    Full Text »    PDF »
A Boundary Element Between Tsix and Xist Binds the Chromatin Insulator Ctcf and Contributes to Initiation of X-Chromosome Inactivation.
R. J. Spencer, B. C. del Rosario, S. F. Pinter, D. Lessing, R. I. Sadreyev, and J. T. Lee (2011)
Genetics 189, 441-454
   Abstract »    Full Text »    PDF »
p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis.
M. Y. Fessing, A. N. Mardaryev, M. R. Gdula, A. A. Sharov, T. Y. Sharova, V. Rapisarda, K. B. Gordon, A. D. Smorodchenko, K. Poterlowicz, G. Ferone, et al. (2011)
J. Cell Biol. 194, 825-839
   Abstract »    Full Text »    PDF »
The role of transcription factories-mediated interchromosomal contacts in the organization of nuclear architecture.
J. Dorier and A. Stasiak (2010)
Nucleic Acids Res. 38, 7410-7421
   Abstract »    Full Text »    PDF »
The spatial dynamics of tissue-specific promoters during C. elegans development.
P. Meister, B. D. Towbin, B. L. Pike, A. Ponti, and S. M. Gasser (2010)
Genes & Dev. 24, 766-782
   Abstract »    Full Text »    PDF »
Dynamic reprogramming of transcription factors to and from the subtelomere.
H. C. Mak, L. Pillus, and T. Ideker (2009)
Genome Res. 19, 1014-1025
   Abstract »    Full Text »    PDF »
The emergence of lineage-specific chromosomal topologies from coordinate gene regulation.
I. Rajapakse, M. D. Perlman, D. Scalzo, C. Kooperberg, M. Groudine, and S. T. Kosak (2009)
PNAS 106, 6679-6684
   Abstract »    Full Text »    PDF »
Transcriptional regulation constrains the organization of genes on eukaryotic chromosomes.
S. C. Janga, J. Collado-Vides, and M. M. Babu (2008)
PNAS 105, 15761-15766
   Abstract »    Full Text »    PDF »
A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations.
V. K. Tiwari, L. Cope, K. M. McGarvey, J. E. Ohm, and S. B. Baylin (2008)
Genome Res. 18, 1171-1179
   Abstract »    Full Text »    PDF »
Differential Nuclear Localization Does Not Determine the Silencing Status of Saccharomyces cerevisiae Telomeres.
M. A. Mondoux, J. G. Scaife, and V. A. Zakian (2007)
Genetics 177, 2019-2029
   Abstract »    Full Text »    PDF »
Physical plasticity of the nucleus in stem cell differentiation.
J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher (2007)
PNAS 104, 15619-15624
   Abstract »    Full Text »    PDF »
Maintenance of imprinting and nuclear architecture in cycling cells.
K. Teller, I. Solovei, K. Buiting, B. Horsthemke, and T. Cremer (2007)
PNAS 104, 14970-14975
   Abstract »    Full Text »    PDF »
Molecular Network and Chromosomal Clustering of Genes Involved in Synaptic Plasticity in the Hippocampus.
C. S. Park, R. Gong, J. Stuart, and S.-J. Tang (2006)
J. Biol. Chem. 281, 30195-30211
   Abstract »    Full Text »    PDF »
Antagonistic Regulation of {beta}-Globin Gene Expression by Helix-Loop-Helix Proteins USF and TFII-I.
V. J. Crusselle-Davis, K. F. Vieira, Z. Zhou, A. Anantharaman, and J. Bungert (2006)
Mol. Cell. Biol. 26, 6832-6843
   Abstract »    Full Text »    PDF »
A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription..
R. Reiner, Y. Ben-Asouli, I. Krilovetzky, and N. Jarrous (2006)
Genes & Dev. 20, 1621-1635
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882