Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 306 (5697): 862-865

Copyright © 2004 by the American Association for the Advancement of Science

A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux

Jirí Friml,1 Xiong Yang,2,3 Marta Michniewicz,1 Dolf Weijers,1,2 Ab Quint,2 Olaf Tietz,4 René Benjamins,2,6 Pieter B. F. Ouwerkerk,2 Karin Ljung,5 Göran Sandberg,5 Paul J. J. Hooykaas,2 Klaus Palme,4 Remko Offringa2*

Abstract: Polar transport–dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.

1 Developmental Genetics, Center for Molecular Biology of Plants, University Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Germany.
2 Developmental Genetics, Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, Netherlands.
3 College of Life Sciences, Peking University, Beijing 100871, China.
4 Albert-Ludwigs-Universität, Biologie II, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
5 Umeå Plant Science Center, Department of Forest and Plant Physiology, Swedish University of Agricultural Sciences, S 901 83 Umeå, Sweden.
6 Institute of Applied Genetics and Cell Biology, BOKU–University of Natural Resources and Applied Life Sciences, Muthgasse 8, A-1190 Vienna, Austria.

* To whom correspondence should be addressed. E-mail: offringa{at}

Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane.
J. Kleine-Vehn, K. Wabnik, A. Martiniere, Łukasz Łangowski, K. Willig, S. Naramoto, J. Leitner, H. Tanaka, S. Jakobs, S. Robert, et al. (2014)
Mol Syst Biol 7, 540
   Abstract »    Full Text »    PDF »
Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.
L. Shalom, S. Samuels, N. Zur, L. Shlizerman, A. Doron-Faigenboim, E. Blumwald, and A. Sadka (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
BEX1/ARF1A1C is Required for BFA-Sensitive Recycling of PIN Auxin Transporters and Auxin-Mediated Development in Arabidopsis.
H. Tanaka, T. Nodzyłski, S. Kitakura, M. I. Feraru, M. Sasabe, T. Ishikawa, J. Kleine-Vehn, T. Kakimoto, and J. Friml (2014)
Plant Cell Physiol. 55, 737-749
   Abstract »    Full Text »    PDF »
Polar delivery in plants; commonalities and differences to animal epithelial cells.
U. Kania, M. Fendrych, and J. Friml (2014)
Open Bio 4, 140017
   Abstract »    Full Text »    PDF »
Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis.
J. Guo, J. Wei, J. Xu, and M.-X. Sun (2014)
J. Exp. Bot. 65, 1165-1179
   Abstract »    Full Text »    PDF »
MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation.
M. Furutani, Y. Nakano, and M. Tasaka (2014)
PNAS 111, 1198-1203
   Abstract »    Full Text »    PDF »
Arabidopsis KANADI1 Acts as a Transcriptional Repressor by Interacting with a Specific cis-Element and Regulates Auxin Biosynthesis, Transport, and Signaling in Opposition to HD-ZIPIII Factors.
T. Huang, Y. Harrar, C. Lin, B. Reinhart, N. R. Newell, F. Talavera-Rauh, S. A. Hokin, M. K. Barton, and R. A. Kerstetter (2014)
PLANT CELL 26, 246-262
   Abstract »    Full Text »    PDF »
Mutations in the Arabidopsis RPK1 gene uncouple cotyledon anlagen and primordia by modulating epidermal cell shape and polarity.
M. Luichtl, B. S. Fiesselmann, M. Matthes, X. Yang, O. Peis, A. Brunner, and R. A. Torres-Ruiz (2013)
Biology Open 2, 1093-1102
   Abstract »    Full Text »    PDF »
Mechanical control of morphogenesis at the shoot apex.
S. Robinson, A. Burian, E. Couturier, B. Landrein, M. Louveaux, E. D. Neumann, A. Peaucelle, A. Weber, and N. Nakayama (2013)
J. Exp. Bot. 64, 4729-4744
   Abstract »    Full Text »    PDF »
Maize LAZY1 Mediates Shoot Gravitropism and Inflorescence Development through Regulating Auxin Transport, Auxin Signaling, and Light Response.
Z. Dong, C. Jiang, X. Chen, T. Zhang, L. Ding, W. Song, H. Luo, J. Lai, H. Chen, R. Liu, et al. (2013)
Plant Physiology 163, 1306-1322
   Abstract »    Full Text »    PDF »
ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.
Y. Boutte, K. Jonsson, H. E. McFarlane, E. Johnson, D. Gendre, R. Swarup, J. Friml, L. Samuels, S. Robert, and R. P. Bhalerao (2013)
PNAS 110, 16259-16264
   Abstract »    Full Text »    PDF »
Calmodulin-Related Proteins Step Out from the Shadow of Their Namesake.
K. W. Bender and W. A. Snedden (2013)
Plant Physiology 163, 486-495
   Full Text »    PDF »
Phosphatidic Acid (PA) Binds PP2AA1 to Regulate PP2A Activity and PIN1 Polar Localization.
H.-B. Gao, Y.-J. Chu, and H.-W. Xue (2013)
Mol Plant 6, 1692-1702
   Abstract »    Full Text »    PDF »
Phototropins Function in High-Intensity Blue Light-Induced Hypocotyl Phototropism in Arabidopsis by Altering Cytosolic Calcium.
X. Zhao, Y.-L. Wang, X.-R. Qiao, J. Wang, L.-D. Wang, C.-S. Xu, and X. Zhang (2013)
Plant Physiology 162, 1539-1551
   Abstract »    Full Text »    PDF »
Polar auxin transport: models and mechanisms.
K. van Berkel, R. J. de Boer, B. Scheres, and K. ten Tusscher (2013)
Development 140, 2253-2268
   Abstract »    Full Text »    PDF »
The role of auxin in shaping shoot architecture.
A. Gallavotti (2013)
J. Exp. Bot. 64, 2593-2608
   Abstract »    Full Text »    PDF »
Auxin and the Arabidopsis thaliana gynoecium.
E. Larsson, R. G. Franks, and E. Sundberg (2013)
J. Exp. Bot. 64, 2619-2627
   Abstract »    Full Text »    PDF »
Auxin and self-organization at the shoot apical meristem.
M. Sassi and T. Vernoux (2013)
J. Exp. Bot. 64, 2579-2592
   Abstract »    Full Text »    PDF »
ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 Is Essential for Polar Auxin Transport in Arabidopsis.
H. Yu, M. Karampelias, S. Robert, W. A. Peer, R. Swarup, S. Ye, L. Ge, J. Cohen, A. Murphy, J. Friml, et al. (2013)
Plant Physiology 162, 965-976
   Abstract »    Full Text »    PDF »
D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis.
B. C. Willige, S. Ahlers, M. Zourelidou, I. C. R. Barbosa, E. Demarsy, M. Trevisan, P. A. Davis, M. R. G. Roelfsema, R. Hangarter, C. Fankhauser, et al. (2013)
PLANT CELL 25, 1674-1688
   Abstract »    Full Text »    PDF »
Inactivation of Plasma Membrane-Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in Arabidopsis.
G. Rigo, F. Ayaydin, O. Tietz, L. Zsigmond, H. Kovacs, A. Pay, K. Salchert, Z. Darula, K. F. Medzihradszky, L. Szabados, et al. (2013)
PLANT CELL 25, 1592-1608
   Abstract »    Full Text »    PDF »
Hormonal regulation of stem cell maintenance in roots.
Y. Lee, W. S. Lee, and S.-H. Kim (2013)
J. Exp. Bot. 64, 1153-1165
   Abstract »    Full Text »    PDF »
SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism.
P. Baster, S. Robert, J. Kleine-Vehn, S. Vanneste, U. Kania, W. Grunewald, B. De Rybel, T. Beeckman, and J. Friml (2013)
EMBO J. 32, 260-274
   Abstract »    Full Text »    PDF »
Diverting the downhill flow of auxin to steer growth during tropisms.
E. P. Spalding (2013)
Am. J. Botany 100, 203-214
   Abstract »    Full Text »    PDF »
PhosPhAt goes kinases--searchable protein kinase target information in the plant phosphorylation site database PhosPhAt.
M. Zulawski, R. Braginets, and W. X. Schulze (2013)
Nucleic Acids Res. 41, D1176-D1184
   Abstract »    Full Text »    PDF »
Gravity Sensing and Signal Transduction in Vascular Plant Primary Roots.
K. L. Baldwin, A. K. Strohm, and P. H. Masson (2013)
Am. J. Botany 100, 126-142
   Abstract »    Full Text »    PDF »
Auxin controls petal initiation in Arabidopsis.
E. R. Lampugnani, A. Kilinc, and D. R. Smyth (2013)
Development 140, 185-194
   Abstract »    Full Text »    PDF »
WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5.
B. C. Willige, E. Ogiso-Tanaka, M. Zourelidou, and C. Schwechheimer (2012)
Development 139, 4020-4028
   Abstract »    Full Text »    PDF »
Manipulation of plant architecture to enhance lignocellulosic biomass.
P. Stamm, V. Verma, R. Ramamoorthy, and P. P. Kumar (2012)
AoB Plants 2012, pls026
   Abstract »    Full Text »    PDF »
Molecular Genetic Analysis of Phototropism in Arabidopsis.
T. Sakai and K. Haga (2012)
Plant Cell Physiol. 53, 1517-1534
   Abstract »    Full Text »    PDF »
The cell wall is a real drag.
S. L. Shaw (2012)
PNAS 109, 12274-12275
   Full Text »    PDF »
The Role of PIN Auxin Efflux Carriers in Polar Auxin Transport and Accumulation and Their Effect on Shaping Maize Development.
C. Forestan and S. Varotto (2012)
Mol Plant 5, 787-798
   Abstract »    Full Text »    PDF »
Cellular Auxin Homeostasis: Gatekeeping Is Housekeeping.
M. Ruiz Rosquete, E. Barbez, and J. Kleine-Vehn (2012)
Mol Plant 5, 772-786
   Abstract »    Full Text »    PDF »
Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation.
S. Henrichs, B. Wang, Y. Fukao, J. Zhu, L. Charrier, A. Bailly, S. C. Oehring, M. Linnert, M. Weiwad, A. Endler, et al. (2012)
EMBO J. 31, 2965-2980
   Abstract »    Full Text »    PDF »
A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in Arabidopsis.
M. Dai, C. Zhang, U. Kania, F. Chen, Q. Xue, T. Mccray, G. Li, G. Qin, M. Wakeley, W. Terzaghi, et al. (2012)
PLANT CELL 24, 2497-2514
   Abstract »    Full Text »    PDF »
The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism.
Y. Wan, J. Jasik, L. Wang, H. Hao, D. Volkmann, D. Menzel, S. Mancuso, F. Baluska, and J. Lin (2012)
PLANT CELL 24, 551-565
   Abstract »    Full Text »    PDF »
POPCORN Functions in the Auxin Pathway to Regulate Embryonic Body Plan and Meristem Organization in Arabidopsis.
D. Xiang, H. Yang, P. Venglat, Y. Cao, R. Wen, M. Ren, S. Stone, E. Wang, H. Wang, W. Xiao, et al. (2011)
PLANT CELL 23, 4348-4367
   Abstract »    Full Text »    PDF »
Is ABP1 an Auxin Receptor Yet?.
J.-H. Shi and Z.-B. Yang (2011)
Mol Plant 4, 635-640
   Abstract »    Full Text »    PDF »
Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family.
B. A. Krizek (2011)
J. Exp. Bot. 62, 3311-3319
   Abstract »    Full Text »    PDF »
Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers.
M. Furutani, N. Sakamoto, S. Yoshida, T. Kajiwara, H. S. Robert, J. Friml, and M. Tasaka (2011)
Development 138, 2069-2078
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
MACCHI-BOU 2 is Required for Early Embryo Patterning and Cotyledon Organogenesis in Arabidopsis.
J. Ito, T. Sono, M. Tasaka, and M. Furutani (2011)
Plant Cell Physiol. 52, 539-552
   Abstract »    Full Text »    PDF »
Model for the regulation of Arabidopsis thaliana leaf margin development.
G. D. Bilsborough, A. Runions, M. Barkoulas, H. W. Jenkins, A. Hasson, C. Galinha, P. Laufs, A. Hay, P. Prusinkiewicz, and M. Tsiantis (2011)
PNAS 108, 3424-3429
   Abstract »    Full Text »    PDF »
vanishing tassel2 Encodes a Grass-Specific Tryptophan Aminotransferase Required for Vegetative and Reproductive Development in Maize.
K. A. Phillips, A. L. Skirpan, X. Liu, A. Christensen, T. L. Slewinski, C. Hudson, S. Barazesh, J. D. Cohen, S. Malcomber, and P. McSteen (2011)
PLANT CELL 23, 550-566
   Abstract »    Full Text »    PDF »
Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones?.
C. Ruyter-Spira, W. Kohlen, T. Charnikhova, A. van Zeijl, L. van Bezouwen, N. de Ruijter, C. Cardoso, J. A. Lopez-Raez, R. Matusova, R. Bours, et al. (2011)
Plant Physiology 155, 721-734
   Abstract »    Full Text »    PDF »
Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition.
D. H. Keuskamp, S. Pollmann, L. A. C. J. Voesenek, A. J. M. Peeters, and R. Pierik (2010)
PNAS 107, 22740-22744
   Abstract »    Full Text »    PDF »
Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling.
P. Dhonukshe, F. Huang, C. S. Galvan-Ampudia, A. P. Mahonen, J. Kleine-Vehn, J. Xu, A. Quint, K. Prasad, J. Friml, B. Scheres, et al. (2010)
Development 137, 3245-3255
   Abstract »    Full Text »    PDF »
Endoplasmic Reticulum: The Rising Compartment in Auxin Biology.
J. Friml and A. R. Jones (2010)
Plant Physiology 154, 458-462
   Full Text »    PDF »
The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells.
W. Grunewald and J. Friml (2010)
EMBO J. 29, 2700-2714
   Abstract »    Full Text »    PDF »
Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 Is Required for Polar Auxin Transport.
L. Ge, W. Peer, S. Robert, R. Swarup, S. Ye, M. Prigge, J. D. Cohen, J. Friml, A. Murphy, D. Tang, et al. (2010)
PLANT CELL 22, 1749-1761
   Abstract »    Full Text »    PDF »
Phospholipase A2 Is Required for PIN-FORMED Protein Trafficking to the Plasma Membrane in the Arabidopsis Root.
O. R. Lee, S. J. Kim, H. J. Kim, J. K. Hong, S. B. Ryu, S. H. Lee, A. Ganguly, and H.-T. Cho (2010)
PLANT CELL 22, 1812-1825
   Abstract »    Full Text »    PDF »
Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells.
A. Rahman, M. Takahashi, K. Shibasaki, S. Wu, T. Inaba, S. Tsurumi, and T. I. Baskin (2010)
PLANT CELL 22, 1762-1776
   Abstract »    Full Text »    PDF »
Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.
J. Palovaara, H. Hallberg, C. Stasolla, B. Luit, and I. Hakman (2010)
Tree Physiol 30, 479-489
   Abstract »    Full Text »    PDF »
Phosphorylation of Conserved PIN Motifs Directs Arabidopsis PIN1 Polarity and Auxin Transport.
F. Huang, M. Kemel Zago, L. Abas, A. van Marion, C. S. Galvan-Ampudia, and R. Offringa (2010)
PLANT CELL 22, 1129-1142
   Abstract »    Full Text »    PDF »
ZmPIN1-Mediated Auxin Transport Is Related to Cellular Differentiation during Maize Embryogenesis and Endosperm Development.
C. Forestan, S. Meda, and S. Varotto (2010)
Plant Physiology 152, 1373-1390
   Abstract »    Full Text »    PDF »
Auxin Transporters--Why So Many?.
E. Zazimalova, A. S. Murphy, H. Yang, K. Hoyerova, and P. Hosek (2010)
Cold Spring Harb Perspect Biol 2, a001552
   Abstract »    Full Text »    PDF »
SLOW MOTION Is Required for Within-Plant Auxin Homeostasis and Normal Timing of Lateral Organ Initiation at the Shoot Meristem in Arabidopsis.
D. Lohmann, N. Stacey, H. Breuninger, Y. Jikumaru, D. Muller, A. Sicard, O. Leyser, S. Yamaguchi, and M. Lenhard (2010)
PLANT CELL 22, 335-348
   Abstract »    Full Text »    PDF »
SEUSS and SEUSS-LIKE Transcriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis.
F. Bao, S. Azhakanandam, and R. G. Franks (2010)
Plant Physiology 152, 821-836
   Abstract »    Full Text »    PDF »
Do Trees Grow on Money? Auxin as the Currency of the Cellular Economy.
J. L. Stewart and J. L. Nemhauser (2010)
Cold Spring Harb Perspect Biol 2, a001420
   Abstract »    Full Text »    PDF »
PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport.
J. Zhang, T. Nodzynski, A. Pencik, J. Rolcik, and J. Friml (2010)
PNAS 107, 918-922
   Abstract »    Full Text »    PDF »
Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis.
T. Ishida, S. Adachi, M. Yoshimura, K. Shimizu, M. Umeda, and K. Sugimoto (2010)
Development 137, 63-71
   Abstract »    Full Text »    PDF »
PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in Arabidopsis.
J. Kleine-Vehn, F. Huang, S. Naramoto, J. Zhang, M. Michniewicz, R. Offringa, and J. Friml (2009)
PLANT CELL 21, 3839-3849
   Abstract »    Full Text »    PDF »
Distinct and Dynamic Auxin Activities During Reproductive Development.
E. Sundberg and L. Ostergaard (2009)
Cold Spring Harb Perspect Biol 1, a001628
   Abstract »    Full Text »    PDF »
Auxin Control of Embryo Patterning.
B. Moller and D. Weijers (2009)
Cold Spring Harb Perspect Biol 1, a001545
   Abstract »    Full Text »    PDF »
NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root.
R. Tsugeki, F. A. Ditengou, Y. Sumi, W. Teale, K. Palme, and K. Okada (2009)
PLANT CELL 21, 3133-3151
   Abstract »    Full Text »    PDF »
Manipulation of Auxin Transport in Plant Roots during Rhizobium Symbiosis and Nematode Parasitism.
W. Grunewald, G. van Noorden, G. Van Isterdael, T. Beeckman, G. Gheysen, and U. Mathesius (2009)
PLANT CELL 21, 2553-2562
   Abstract »    Full Text »    PDF »
Auxin transport routes in plant development.
J. Petrasek and J. Friml (2009)
Development 136, 2675-2688
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis.
L. Song, X.-Y. Zhou, L. Li, L.-J. Xue, X. Yang, and H.-W. Xue (2009)
Mol Plant 2, 755-772
   Abstract »    Full Text »    PDF »
The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots.
J. Hejatko, H. Ryu, G.-T. Kim, R. Dobesova, S. Choi, S. M. Choi, P. Soucek, J. Horak, B. Pekarova, K. Palme, et al. (2009)
PLANT CELL 21, 2008-2021
   Abstract »    Full Text »    PDF »
Partitioning the Apical Domain of the Arabidopsis Embryo Requires the BOBBER1 NudC Domain Protein.
R. J. Jurkuta, N. J. Kaplinsky, J. E. Spindel, and M. K. Barton (2009)
PLANT CELL 21, 1957-1971
   Abstract »    Full Text »    PDF »
PINOID Kinase Regulates Root Gravitropism through Modulation of PIN2-Dependent Basipetal Auxin Transport in Arabidopsis.
P. Sukumar, K. S. Edwards, A. Rahman, A. DeLong, and G. K. Muday (2009)
Plant Physiology 150, 722-735
   Abstract »    Full Text »    PDF »
A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning.
S. E. Ploense, M.-F. Wu, P. Nagpal, and J. W. Reed (2009)
Development 136, 1509-1517
   Abstract »    Full Text »    PDF »
Meristematic sculpting in fruit development.
T. Girin, K. Sorefan, and L. Ostergaard (2009)
J. Exp. Bot. 60, 1493-1502
   Abstract »    Full Text »    PDF »
Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition.
B. Titapiwatanakun and A. S. Murphy (2009)
J. Exp. Bot. 60, 1093-1107
   Abstract »    Full Text »    PDF »
The ESCRT-Related CHMP1A and B Proteins Mediate Multivesicular Body Sorting of Auxin Carriers in Arabidopsis and Are Required for Plant Development.
C. Spitzer, F. C. Reyes, R. Buono, M. K. Sliwinski, T. J. Haas, and M. S. Otegui (2009)
PLANT CELL 21, 749-766
   Abstract »    Full Text »    PDF »
BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development.
A. Skirpan, A. H. Culler, A. Gallavotti, D. Jackson, J. D. Cohen, and P. McSteen (2009)
Plant Cell Physiol. 50, 652-657
   Abstract »    Full Text »    PDF »
The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana.
M. Zourelidou, I. Muller, B. C. Willige, C. Nill, Y. Jikumaru, H. Li, and C. Schwechheimer (2009)
Development 136, 627-636
   Abstract »    Full Text »    PDF »
Developmental disaster1: A novel mutation causing defects during vegetative and inflorescence development in maize (Zea mays, Poaceae).
K. A. Phillips, A. L. Skirpan, N. J. Kaplinsky, and P. McSteen (2009)
Am. J. Botany 96, 420-430
   Abstract »    Full Text »    PDF »
Tobacco Arp3 is localized to actin-nucleating sites in vivo.
J. Maisch, J. Fiserova, L. Fischer, and P. Nick (2009)
J. Exp. Bot. 60, 603-614
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882