Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 306 (5698): 1029-1032

Copyright © 2004 by the American Association for the Advancement of Science

Nicotine Activation of {alpha}4* Receptors: Sufficient for Reward, Tolerance, and Sensitization

Andrew R. Tapper,1 Sheri L. McKinney,1 Raad Nashmi,1 Johannes Schwarz,1,2 Purnima Deshpande,1 Cesar Labarca,1 Paul Whiteaker,3 Michael J. Marks,3 Allan C. Collins,3 Henry A. Lester1*

Abstract: The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with {alpha}4 nicotinic subunits containing a single point mutation, Leu9' -> Ala9' in the pore-forming M2 domain, rendering {alpha}4* receptors hypersensitive to nicotine. Selective activation of {alpha}4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of {alpha}4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.

1 Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
2 Department of Neurology, University of Leipzig, 04103 Leipzig, Germany.
3 Institute of Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA.

* To whom correspondence should be addressed. E-mail: lester{at}

Rare Human Nicotinic Acetylcholine Receptor {alpha}4 Subunit (CHRNA4) Variants Affect Expression and Function of High-Affinity Nicotinic Acetylcholine Receptors.
T. D. McClure-Begley, R. L. Papke, K. L. Stone, C. Stokes, A. D. Levy, J. Gelernter, P. Xie, J. Lindstrom, and M. R. Picciotto (2014)
J. Pharmacol. Exp. Ther. 348, 410-420
   Abstract »    Full Text »    PDF »
Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2.
A. M. Herman, L. Huang, D. K. Murphey, I. Garcia, and B. R. Arenkiel (2014)
eLife Sci 3, e01481
   Abstract »    Full Text »    PDF »
Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors.
B. J. Henderson, R. Srinivasan, W. A. Nichols, C. N. Dilworth, D. F. Gutierrez, E. D. W. Mackey, S. McKinney, R. M. Drenan, C. I. Richards, and H. A. Lester (2014)
J. Gen. Physiol. 143, 51-66
   Abstract »    Full Text »    PDF »
COPI polices nicotine-mediated up-regulation of nicotinic receptors.
R. Anand (2014)
J. Gen. Physiol. 143, 49-50
   Full Text »    PDF »
Nicotinic receptors regulate the dynamic range of dopamine release in vivo.
J. L. Koranda, J. J. Cone, D. S. McGehee, M. F. Roitman, J. A. Beeler, and X. Zhuang (2014)
J Neurophysiol 111, 103-111
   Abstract »    Full Text »    PDF »
Identifying Key Amino Acid Residues That Affect {alpha}-Conotoxin AuIB Inhibition of {alpha}3{beta}4 Nicotinic Acetylcholine Receptors.
A. A. Grishin, H. Cuny, A. Hung, R. J. Clark, A. Brust, K. Akondi, P. F. Alewood, D. J. Craik, and D. J. Adams (2013)
J. Biol. Chem. 288, 34428-34442
   Abstract »    Full Text »    PDF »
{alpha}4{alpha}6{beta}2* Nicotinic Acetylcholine Receptor Activation on Ventral Tegmental Area Dopamine Neurons Is Sufficient to Stimulate a Depolarizing Conductance and Enhance Surface AMPA Receptor Function.
S. E. Engle, P.-Y. Shih, J. M. McIntosh, and R. M. Drenan (2013)
Mol. Pharmacol. 84, 393-406
   Abstract »    Full Text »    PDF »
Mesolimbic Dopamine and Habenulo-Interpeduncular Pathways in Nicotine Withdrawal.
J. A. Dani and M. De Biasi (2013)
Cold Spring Harb Perspect Med 3, a012138
   Abstract »    Full Text »    PDF »
ACR-12 Ionotropic Acetylcholine Receptor Complexes Regulate Inhibitory Motor Neuron Activity in Caenorhabditis elegans.
H. A. Petrash, A. Philbrook, M. Haburcak, B. Barbagallo, and M. M. Francis (2013)
J. Neurosci. 33, 5524-5532
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying Behaviors Related to Nicotine Addiction.
M. R. Picciotto and P. J. Kenny (2013)
Cold Spring Harb Perspect Med 3, a012112
   Abstract »    Full Text »    PDF »
Development of Novel Pharmacotherapeutics for Tobacco Dependence: Progress and Future Directions.
D. Harmey, P. R. Griffin, and P. J. Kenny (2012)
Nicotine Tob Res 14, 1300-1318
   Abstract »    Full Text »    PDF »
Preclinical Evidence That Activation of Mesolimbic Alpha 6 Subunit Containing Nicotinic Acetylcholine Receptors Supports Nicotine Addiction Phenotype.
D. H. Brunzell (2012)
Nicotine Tob Res 14, 1258-1269
   Abstract »    Full Text »    PDF »
Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations.
R. M. Drenan and H. A. Lester (2012)
Pharmacol. Rev. 64, 869-879
   Abstract »    Full Text »    PDF »
Optimizing Cholinergic Tone Through Lynx Modulators of Nicotinic Receptors: Implications for Plasticity and Nicotine Addiction.
J. M. Miwa, H. A. Lester, and A. Walz (2012)
Physiology 27, 187-199
   Abstract »    Full Text »    PDF »
Long-Term Nicotine Exposure Depresses Dopamine Release in Nonhuman Primate Nucleus Accumbens.
X. A. Perez, J. Ly, J. M. McIntosh, and M. Quik (2012)
J. Pharmacol. Exp. Ther. 342, 335-344
   Abstract »    Full Text »    PDF »
Molecular actions of smoking cessation drugs at {alpha}4{beta}2 nicotinic receptors defined in crystal structures of a homologous binding protein.
B. Billen, R. Spurny, M. Brams, R. van Elk, S. Valera-Kummer, J. L. Yakel, T. Voets, D. Bertrand, A. B. Smit, and C. Ulens (2012)
PNAS 109, 9173-9178
   Abstract »    Full Text »    PDF »
Smoking cessation therapy during pregnancy.
A. M. Cressman, A. Pupco, E. Kim, G. Koren, and P. Bozzo (2012)
Can Fam Physician 58, 525-527
   Abstract »    Full Text »    PDF »
Plasma Levels of Metabolites of Catecholamine in Nicotine-Dependent Patients Treated With Varenicline.
W. Umene-Nakano, R. Yoshimura, C. Yoshii, K. Hayashi, A. Ikenouchi-Sugita, A. Katsuki, H. Hori, and J. Nakamura (2012)
Nicotine Tob Res 14, 486-489
   Abstract »    Full Text »    PDF »
Nicotine Persistently Activates Ventral Tegmental Area Dopaminergic Neurons via Nicotinic Acetylcholine Receptors Containing {alpha}4 and {alpha}6 Subunits.
L. Liu, R. Zhao-Shea, J. M. McIntosh, P. D. Gardner, and A. R. Tapper (2012)
Mol. Pharmacol. 81, 541-548
   Abstract »    Full Text »    PDF »
How Do We Safely Get People to Stop Smoking?.
D. C. L. Lam and J. D. Minna (2011)
Cancer Prevention Research 4, 1724-1727
   Abstract »    Full Text »    PDF »
Cytokine-Induced Alterations of {alpha}7 Nicotinic Receptor in Colonic CD4 T Cells Mediate Dichotomous Response to Nicotine in Murine Models of Th1/Th17- versus Th2-Mediated Colitis.
V. Galitovskiy, J. Qian, A. I. Chernyavsky, S. Marchenko, V. Gindi, R. A. Edwards, and S. A. Grando (2011)
J. Immunol. 187, 2677-2687
   Abstract »    Full Text »    PDF »
{alpha}4{beta}2 Nicotinic Acetylcholine Receptors on Dopaminergic Neurons Mediate Nicotine Reward and Anxiety Relief.
T. M. McGranahan, N. E. Patzlaff, S. R. Grady, S. F. Heinemann, and T. K. Booker (2011)
J. Neurosci. 31, 10891-10902
   Abstract »    Full Text »    PDF »
Nicotine Potentiation of Excitatory Inputs to Ventral Tegmental Area Dopamine Neurons.
D. Mao, K. Gallagher, and D. S. McGehee (2011)
J. Neurosci. 31, 6710-6720
   Abstract »    Full Text »    PDF »
Distinct contributions of nicotinic acetylcholine receptor subunit {alpha}4 and subunit {alpha}6 to the reinforcing effects of nicotine.
R. Exley, N. Maubourguet, V. David, R. Eddine, A. Evrard, S. Pons, F. Marti, S. Threlfell, P. Cazala, J. M. McIntosh, et al. (2011)
PNAS 108, 7577-7582
   Abstract »    Full Text »    PDF »
Evaluation of Rhodiola rosea L. extract on affective and physical signs of nicotine withdrawal in mice.
L. Mattioli and M. Perfumi (2011)
J Psychopharmacol 25, 402-410
   Abstract »    Full Text »    PDF »
Short- and Long-Lasting Consequences of In Vivo Nicotine Treatment on Hippocampal Excitability.
R. E. Penton, M. W. Quick, and R. A. J. Lester (2011)
J. Neurosci. 31, 2584-2594
   Abstract »    Full Text »    PDF »
Activation of {alpha}4* nAChRs is Necessary and Sufficient for Varenicline-Induced Reduction of Alcohol Consumption.
L. M. Hendrickson, R. Zhao-Shea, X. Pang, P. D. Gardner, and A. R. Tapper (2010)
J. Neurosci. 30, 10169-10176
   Abstract »    Full Text »    PDF »
Nicotinic pharmacophore: The pyridine N of nicotine and carbonyl of acetylcholine hydrogen bond across a subunit interface to a backbone NH.
A. P. Blum, H. A. Lester, and D. A. Dougherty (2010)
PNAS 107, 13206-13211
   Abstract »    Full Text »    PDF »
A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction.
L. E. Hong, C. A. Hodgkinson, Y. Yang, H. Sampath, T. J. Ross, B. Buchholz, B. J. Salmeron, V. Srivastava, G. K. Thaker, D. Goldman, et al. (2010)
PNAS 107, 13509-13514
   Abstract »    Full Text »    PDF »
Role of {alpha}5 Nicotinic Acetylcholine Receptors in Pharmacological and Behavioral Effects of Nicotine in Mice.
K. J. Jackson, M. J. Marks, R. E. Vann, X. Chen, T. F. Gamage, J. A. Warner, and M. I. Damaj (2010)
J. Pharmacol. Exp. Ther. 334, 137-146
   Abstract »    Full Text »    PDF »
Pharmacological treatment for smoking cessation.
C. A. Jimenez-Ruiz (2010)
Smoking Cessation 74-97
   Abstract »    Full Text »    PDF »
Addictive Nicotine Alters Local Circuit Inhibition during the Induction of In Vivo Hippocampal Synaptic Potentiation.
T. A. Zhang, J. Tang, V. I. Pidoplichko, and J. A. Dani (2010)
J. Neurosci. 30, 6443-6453
   Abstract »    Full Text »    PDF »
Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area {alpha}6{beta}2* Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement.
C. Gotti, S. Guiducci, V. Tedesco, S. Corbioli, L. Zanetti, M. Moretti, A. Zanardi, R. Rimondini, M. Mugnaini, F. Clementi, et al. (2010)
J. Neurosci. 30, 5311-5325
   Abstract »    Full Text »    PDF »
ASCL1 Regulates the Expression of the CHRNA5/A3/B4 Lung Cancer Susceptibility Locus.
Ma. R. D. Improgo, N. A. Schlichting, R. Y. Cortes, R. Zhao-Shea, A. R. Tapper, and P. D. Gardner (2010)
Mol. Cancer Res. 8, 194-203
   Abstract »    Full Text »    PDF »
Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive {alpha}4 nicotinic receptors via a cholinergic-dependent mechanism.
R. Zhao-Shea, B. N. Cohen, H. Just, T. McClure-Begley, P. Whiteaker, S. R. Grady, O. Salminen, P. D. Gardner, H. A. Lester, and A. R. Tapper (2010)
FASEB J 24, 49-57
   Abstract »    Full Text »    PDF »
The Role of {alpha}6-Containing Nicotinic Acetylcholine Receptors in Nicotine Reward and Withdrawal.
K. J. Jackson, J. M. McIntosh, D. H. Brunzell, S. S. Sanjakdar, and M. I. Damaj (2009)
J. Pharmacol. Exp. Ther. 331, 547-554
   Abstract »    Full Text »    PDF »
Chronic Nicotine Selectively Enhances {alpha}4{beta}2* Nicotinic Acetylcholine Receptors in the Nigrostriatal Dopamine Pathway.
C. Xiao, R. Nashmi, S. McKinney, H. Cai, J. M. McIntosh, and H. A. Lester (2009)
J. Neurosci. 29, 12428-12439
   Abstract »    Full Text »    PDF »
Presynaptic Targeting of {alpha}4{beta}2 Nicotinic Acetylcholine Receptors Is Regulated by Neurexin-1{beta}.
S.-B. Cheng, S. A. Amici, X.-Q. Ren, S. B. McKay, M. W. Treuil, J. M. Lindstrom, J. Rao, and R. Anand (2009)
J. Biol. Chem. 284, 23251-23259
   Abstract »    Full Text »    PDF »
Combination treatment with varenicline and nicotine replacement therapy.
J. O. Ebbert, M. V. Burke, J. T. Hays, and R. D. Hurt (2009)
Nicotine Tob Res 11, 572-576
   Abstract »    Full Text »    PDF »
The Neurobiology of Nicotine Addiction: Clinical and Public Policy Implications.
P. D. Gardner, A. R. Tapper, J. A. King, J. R. DiFranza, and D. M. Ziedonis (2009)
Journal of Drug Issues 39, 417-441
   Abstract »    PDF »
Varenicline and bupropion sustained-release combination therapy for smoking cessation.
J. O. Ebbert, I. T. Croghan, A. Sood, D. R. Schroeder, J. T. Hays, and R. D. Hurt (2009)
Nicotine Tob Res 11, 234-239
   Abstract »    Full Text »    PDF »
Smoking and depression: is smoking cessation effective?.
E. Ischaki and C. Gratziou (2009)
Therapeutic Advances in Respiratory Disease 3, 31-38
   Abstract »    PDF »
Distinctive nicotinic acetylcholine receptor functional phenotypes of rat ventral tegmental area dopaminergic neurons.
K. Yang, J. Hu, L. Lucero, Q. Liu, C. Zheng, X. Zhen, G. Jin, R. J. Lukas, and J. Wu (2009)
J. Physiol. 587, 345-361
   Abstract »    Full Text »    PDF »
Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function.
E. X. Albuquerque, E. F. R. Pereira, M. Alkondon, and S. W. Rogers (2009)
Physiol Rev 89, 73-120
   Abstract »    Full Text »    PDF »
Crucial Role of {alpha}4 and {alpha}6 Nicotinic Acetylcholine Receptor Subunits from Ventral Tegmental Area in Systemic Nicotine Self-Administration.
S. Pons, L. Fattore, G. Cossu, S. Tolu, E. Porcu, J. M. McIntosh, J. P. Changeux, U. Maskos, and W. Fratta (2008)
J. Neurosci. 28, 12318-12327
   Abstract »    Full Text »    PDF »
Neurobiology of nicotine dependence.
A. Markou (2008)
Phil Trans R Soc B 363, 3159-3168
   Abstract »    Full Text »    PDF »
Greater Nicotinic Acetylcholine Receptor Density in Smokers Than in Nonsmokers: A PET Study with 2-18F-FA-85380.
A. G. Mukhin, A. S. Kimes, S. I. Chefer, J. A. Matochik, C. S. Contoreggi, A. G. Horti, D. B. Vaupel, O. Pavlova, and E. A. Stein (2008)
J. Nucl. Med. 49, 1628-1635
   Abstract »    Full Text »    PDF »
Long-Term Nicotine Treatment Differentially Regulates Striatal {alpha}6{alpha}4{beta}2* and {alpha}6(Non{alpha}4){beta}2* nAChR Expression and Function.
X. A. Perez, T. Bordia, J. M. McIntosh, S. R. Grady, and M. Quik (2008)
Mol. Pharmacol. 74, 844-853
   Abstract »    Full Text »    PDF »
Influence of Neuronal Nicotinic Receptors over Nicotine Addiction and Withdrawal.
M. De Biasi and R. Salas (2008)
Experimental Biology and Medicine 233, 917-929
   Abstract »    Full Text »    PDF »
Nonsynaptic Chemical Transmission Through Nicotinic Acetylcholine Receptors.
B. Lendvai and E. S. Vizi (2008)
Physiol Rev 88, 333-349
   Abstract »    Full Text »    PDF »
Mitochondrial Reactive Oxygen Species Inactivate Neuronal Nicotinic Acetylcholine Receptors and Induce Long-Term Depression of Fast Nicotinic Synaptic Transmission.
V. A. Campanucci, A. Krishnaswamy, and E. Cooper (2008)
J. Neurosci. 28, 1733-1744
   Abstract »    Full Text »    PDF »
{alpha}4* Nicotinic Receptors in preBotzinger Complex Mediate Cholinergic/Nicotinic Modulation of Respiratory Rhythm.
X. M. Shao, W. Tan, J. Xiu, N. Puskar, C. Fonck, H. A. Lester, and J. L. Feldman (2008)
J. Neurosci. 28, 519-528
   Abstract »    Full Text »    PDF »
Negative Allosteric Modulation of Nicotinic Acetylcholine Receptors Blocks Nicotine Self-Administration in Rats.
R. F. Yoshimura, D. J. Hogenkamp, W. Y. Li, M. B. Tran, J. D. Belluzzi, E. R. Whittemore, F. M. Leslie, and K. W. Gee (2007)
J. Pharmacol. Exp. Ther. 323, 907-915
   Abstract »    Full Text »    PDF »
Treatment of tobacco dependence: integrating recent progress into practice.
B. Le Foll MD PhD and T. P. George MD (2007)
Can. Med. Assoc. J. 177, 1373-1380
   Abstract »    Full Text »    PDF »
Nicotine responses in hypersensitive and knockout {alpha}4 mice account for tolerance to both hypothermia and locomotor suppression in wild-type mice.
A. R. Tapper, S. L. McKinney, M. J. Marks, and H. A. Lester (2007)
Physiol Genomics 31, 422-428
   Abstract »    Full Text »    PDF »
A neurobiological basis for nicotine withdrawal.
N. E. Grunberg (2007)
PNAS 104, 17901-17902
   Full Text »    PDF »
The Endocannabinoid Anandamide Inhibits the Function of {alpha}4beta2 Nicotinic Acetylcholine Receptors.
C. E. Spivak, C. R. Lupica, and M. Oz (2007)
Mol. Pharmacol. 72, 1024-1032
   Abstract »    Full Text »    PDF »
Association of attentional network function with exon 5 variations of the CHRNA4 gene.
G. Winterer, F. Musso, A. Konrad, G. Vucurevic, P. Stoeter, T. Sander, and J. Gallinat (2007)
Hum. Mol. Genet. 16, 2165-2174
   Abstract »    Full Text »    PDF »
Bacterial Expression, NMR, and Electrophysiology Analysis of Chimeric Short/Long-chain {alpha}-Neurotoxins Acting on Neuronal Nicotinic Receptors.
E. N. Lyukmanova, Z. O. Shenkarev, A. A. Schulga, Y. S. Ermolyuk, D. Yu. Mordvintsev, Y. N. Utkin, M. A. Shoulepko, R. C. Hogg, D. Bertrand, D. A. Dolgikh, et al. (2007)
J. Biol. Chem. 282, 24784-24791
   Abstract »    Full Text »    PDF »
Chronic Nicotine Cell Specifically Upregulates Functional {alpha}4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path.
R. Nashmi, C. Xiao, P. Deshpande, S. McKinney, S. R. Grady, P. Whiteaker, Q. Huang, T. McClure-Begley, J. M. Lindstrom, C. Labarca, et al. (2007)
J. Neurosci. 27, 8202-8218
   Abstract »    Full Text »    PDF »
Folding, activity and import of steroidogenic acute regulatory protein into mitochondria changed by nicotine exposure.
M. Bose, D. Debnath, Y. Chen, and H. S Bose (2007)
J. Mol. Endocrinol. 39, 67-79
   Abstract »    Full Text »    PDF »
Expression of Nicotinic Acetylcholine Receptor Subunit Genes in Non-Small-Cell Lung Cancer Reveals Differences between Smokers and Nonsmokers.
D. C.-l. Lam, L. Girard, R. Ramirez, W.-s. Chau, W.-s. Suen, S. Sheridan, V. P.C. Tin, L.-p. Chung, M. P. Wong, J. W. Shay, et al. (2007)
Cancer Res. 67, 4638-4647
   Abstract »    Full Text »    PDF »
Ca2+ Permeability of the ({alpha}4)3(beta2)2 Stoichiometry Greatly Exceeds That of ({alpha}4)2(beta2)3 Human Acetylcholine Receptors.
L. Tapia, A. Kuryatov, and J. Lindstrom (2007)
Mol. Pharmacol. 71, 769-776
   Abstract »    Full Text »    PDF »
The Ferrier Lecture 1998 The molecular biology of consciousness investigated with genetically modified mice.
J.-P. Changeux (2006)
Phil Trans R Soc B 361, 2239-2259
   Abstract »    Full Text »    PDF »
Sazetidine-A, A Novel Ligand That Desensitizes {alpha}4beta2 Nicotinic Acetylcholine Receptors without Activating Them.
Y. Xiao, H. Fan, J. L. Musachio, Z.-L. Wei, S. K. Chellappan, A. P. Kozikowski, and K. J. Kellar (2006)
Mol. Pharmacol. 70, 1454-1460
   Abstract »    Full Text »    PDF »
{alpha}4beta2 Nicotinic Receptors with High and Low Acetylcholine Sensitivity: Pharmacology, Stoichiometry, and Sensitivity to Long-Term Exposure to Nicotine.
M. Moroni, R. Zwart, E. Sher, B. K. Cassels, and I. Bermudez (2006)
Mol. Pharmacol. 70, 755-768
   Abstract »    Full Text »    PDF »
Differential Regulation of Mesolimbic {alpha}3/{alpha}6beta2 and {alpha}4beta2 Nicotinic Acetylcholine Receptor Sites and Function after Long-Term Oral Nicotine to Monkeys.
S. E. McCallum, N. Parameswaran, T. Bordia, H. Fan, J. M. McIntosh, and M. Quik (2006)
J. Pharmacol. Exp. Ther. 318, 381-388
   Abstract »    Full Text »    PDF »
Enhanced expression of hypersensitive {alpha}4* nAChR in adult mice increases the loss of midbrain dopaminergic neurons.
J. Schwarz, S. C. Schwarz, O. Dorigo, A. Stutzer, F. Wegner, C. Labarca, P. Deshpande, J. S. Gil, A. J. Berk, and H. A. Lester (2006)
FASEB J 20, 935-946
   Abstract »    Full Text »    PDF »
Iptakalim as a Human Nicotinic Acetylcholine Receptor Antagonist.
J. Hu, K. Lindenberger, G. Hu, H. Wang, R. J. Lukas, and J. Wu (2006)
J. Pharmacol. Exp. Ther. 316, 914-925
   Abstract »    Full Text »    PDF »
Novel Seizure Phenotype and Sleep Disruptions in Knock-In Mice with Hypersensitive {alpha}4* Nicotinic Receptors.
C. Fonck, B. N. Cohen, R. Nashmi, P. Whiteaker, D. A. Wagenaar, N. Rodrigues-Pinguet, P. Deshpande, S. McKinney, S. Kwoh, J. Munoz, et al. (2005)
J. Neurosci. 25, 11396-11411
   Abstract »    Full Text »    PDF »
Nicotine Acts as a Pharmacological Chaperone to Up-Regulate Human {alpha}4{beta}2 Acetylcholine Receptors.
A. Kuryatov, J. Luo, J. Cooper, and J. Lindstrom (2005)
Mol. Pharmacol. 68, 1839-1851
   Abstract »    Full Text »    PDF »
Structural Determinants of {alpha}4{beta}2 Nicotinic Acetylcholine Receptor Trafficking.
X.-Q. Ren, S.-B. Cheng, M. W. Treuil, J. Mukherjee, J. Rao, K. H. Braunewell, J. M. Lindstrom, and R. Anand (2005)
J. Neurosci. 25, 6676-6686
   Abstract »    Full Text »    PDF »
The Effects of Subunit Composition on the Inhibition of Nicotinic Receptors by the Amphipathic Blocker 2,2,6,6-Tetramethylpiperidin-4-yl Heptanoate.
R. L. Papke, J. D. Buhr, M. M. Francis, K. I. Choi, J. S. Thinschmidt, and N. A. Horenstein (2005)
Mol. Pharmacol. 67, 1977-1990
   Abstract »    Full Text »    PDF »
Ethnic- and gender-specific association of the nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) with nicotine dependence.
M. D. Li, J. Beuten, J. Z. Ma, T. J. Payne, X.-Y. Lou, V. Garcia, A. S. Duenes, K. M. Crews, and R. C. Elston (2005)
Hum. Mol. Genet. 14, 1211-1219
   Abstract »    Full Text »    PDF »
Nicotinic Receptor Subtypes in Rat Hippocampal Slices Are Differentially Sensitive to Desensitization and Early in Vivo Functional Up-Regulation by Nicotine and to Block by Bupropion.
M. Alkondon and E. X. Albuquerque (2005)
J. Pharmacol. Exp. Ther. 313, 740-750
   Abstract »    Full Text »    PDF »
Craving nicotine: It's in the genes.
D. Secko (2005)
Can. Med. Assoc. J. 172, 175-176
   Full Text »    PDF »
NEUROSCIENCE: Enhanced: What Genes Tell Us About Nicotine Addiction.
R. C. Hogg and D. Bertrand (2004)
Science 306, 983-985
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882