Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5700): 1390-1393

Copyright © 2004 by the American Association for the Advancement of Science

Anabaena Sensory Rhodopsin: A Photochromic Color Sensor at 2.0 Å

Lutz Vogeley,1 Oleg A. Sineshchekov,3,5 Vishwa D. Trivedi,3 Jun Sasaki,3 John L. Spudich,3,4* Hartmut Luecke1,2*

Abstract: Microbial sensory rhodopsins are a family of membrane-embedded photoreceptors in prokaryotic and eukaryotic organisms. Structures of archaeal rhodopsins, which function as light-driven ion pumps or photosensors, have been reported. We present the structure of a eubacterial rhodopsin, which differs from those of previously characterized archaeal rhodopsins in its chromophore and cytoplasmic-side portions. Anabaena sensory rhodopsin exhibits light-induced interconversion between stable 13-cis and all-trans states of the retinylidene protein. The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.

1 Department of Molecular Biology and Biochemistry,
2 Department of Physiology and Biophysics and Department of Informatics and Computer Sciences, University of California, Irvine, CA 92697, USA.
3 Center for Membrane Biology, Department of Biochemistry and Molecular Biology,
4 Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA.
5 Biology Department, Moscow State University, Moscow, Russia.

* To whom correspondence should be addressed. E-mail: hudel{at}uci.edu (H.L.) or john.l.spudich{at}uth.tmc.edu (J.L.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria.
I. Gushchin, P. Chervakov, P. Kuzmichev, A. N. Popov, E. Round, V. Borshchevskiy, A. Ishchenko, L. Petrovskaya, V. Chupin, D. A. Dolgikh, et al. (2013)
PNAS 110, 12631-12636
   Abstract »    Full Text »    PDF »
A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light.
M. Luck, T. Mathes, S. Bruun, R. Fudim, R. Hagedorn, T. M. Tran Nguyen, S. Kateriya, J. T. M. Kennis, P. Hildebrandt, and P. Hegemann (2012)
J. Biol. Chem. 287, 40083-40090
   Abstract »    Full Text »    PDF »
Factors That Differentiate the H-bond Strengths of Water Near the Schiff Bases in Bacteriorhodopsin and Anabaena Sensory Rhodopsin.
K. Saito, H. Kandori, and H. Ishikita (2012)
J. Biol. Chem. 287, 34009-34018
   Abstract »    Full Text »    PDF »
Photo-induced Regulation of the Chromatic Adaptive Gene Expression by Anabaena Sensory Rhodopsin.
H. Irieda, T. Morita, K. Maki, M. Homma, H. Aiba, and Y. Sudo (2012)
J. Biol. Chem. 287, 32485-32493
   Abstract »    Full Text »    PDF »
Structural Model of Channelrhodopsin.
H. C. Watanabe, K. Welke, F. Schneider, S. Tsunoda, F. Zhang, K. Deisseroth, P. Hegemann, and M. Elstner (2012)
J. Biol. Chem. 287, 7456-7466
   Abstract »    Full Text »    PDF »
Anabaena sensory rhodopsin is a light-driven unidirectional rotor.
A. Strambi, B. Durbeej, N. Ferre, and M. Olivucci (2010)
PNAS 107, 21322-21326
   Abstract »    Full Text »    PDF »
Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
H. Luecke, B. Schobert, J. Stagno, E. S. Imasheva, J. M. Wang, S. P. Balashov, and J. K. Lanyi (2008)
PNAS 105, 16561-16565
   Abstract »    Full Text »    PDF »
A Schiff base connectivity switch in sensory rhodopsin signaling.
O. A. Sineshchekov, J. Sasaki, B. J. Phillips, and J. L. Spudich (2008)
PNAS 105, 16159-16164
   Abstract »    Full Text »    PDF »
The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment.
L. D. Alcaraz, G. Olmedo, G. Bonilla, R. Cerritos, G. Hernandez, A. Cruz, E. Ramirez, C. Putonti, B. Jimenez, E. Martinez, et al. (2008)
PNAS 105, 5803-5808
   Abstract »    Full Text »    PDF »
Retinal Biosynthesis in Fungi: Characterization of the Carotenoid Oxygenase CarX from Fusarium fujikuroi.
A. Prado-Cabrero, D. Scherzinger, J. Avalos, and S. Al-Babili (2007)
Eukaryot. Cell 6, 650-657
   Abstract »    Full Text »    PDF »
Cell evolution and Earth history: stasis and revolution.
T. Cavalier-Smith (2006)
Phil Trans R Soc B 361, 969-1006
   Abstract »    Full Text »    PDF »
Conformational Changes in the Photocycle of Anabaena Sensory Rhodopsin: ABSENCE OF THE SCHIFF BASE COUNTERION PROTONATION SIGNAL.
V. B. Bergo, M. Ntefidou, V. D. Trivedi, J. J. Amsden, J. M. Kralj, K. J. Rothschild, and J. L. Spudich (2006)
J. Biol. Chem. 281, 15208-15214
   Abstract »    Full Text »    PDF »
Photoactivation Perturbs the Membrane-embedded Contacts between Sensory Rhodopsin II and Its Transducer.
V. B. Bergo, E. N. Spudich, K. J. Rothschild, and J. L. Spudich (2005)
J. Biol. Chem. 280, 28365-28369
   Abstract »    Full Text »    PDF »
Photochromicity of Anabaena Sensory Rhodopsin, an Atypical Microbial Receptor with a cis-Retinal Light-adapted Form.
O. A. Sineshchekov, V. D. Trivedi, J. Sasaki, and J. L. Spudich (2005)
J. Biol. Chem. 280, 14663-14668
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882