Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 306 (5701): 1513-1515

Copyright © 2004 by the American Association for the Advancement of Science

The Ethylene Signaling Pathway

Jose M. Alonso*, and Anna N. Stepanova

Abstract: Plants use a structurally very simple gas molecule, the hydrocarbon ethylene, to modulate various developmental programs and coordinate responses to a multitude of external stress factors. How this simple molecule generates such a diverse array of effects has been the subject of intense research for the past two decades. A fascinating signaling pathway, with classical as well as novel plant-specific signaling elements, is emerging from these studies. We describe the four main modules that constitute this signaling pathway: a phosphotransfer relay, an EIN2-based unit, a ubiquitin-mediated protein degradation component, and a transcriptional cascade. The canonical and Arabidopsis ethylene signaling pathways in the Signal Transduction Knowledge Environment Connections Maps provide a complete panoramic view of these signaling events in plants.

Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.

* To whom correspondence should be addressed. E-mail: jmalonso{at}

Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.
E. M. Golenberg and N. W. West (2013)
Am. J. Botany 100, 1022-1037
   Abstract »    Full Text »    PDF »
Ammonium-induced shoot ethylene production is associated with the inhibition of lateral root formation in Arabidopsis.
G. Li, B. Li, G. Dong, X. Feng, H. J. Kronzucker, and W. Shi (2013)
J. Exp. Bot. 64, 1413-1425
   Abstract »    Full Text »    PDF »
The Predicted Arabidopsis Interactome Resource and Network Topology-Based Systems Biology Analyses.
M. Lin, X. Zhou, X. Shen, C. Mao, and X. Chen (2011)
PLANT CELL 23, 911-922
   Abstract »    Full Text »    PDF »
Involvement of Ethylene and Hydrogen Peroxide in Induction of Alternative Respiratory Pathway in Salt-Treated Arabidopsis Calluses.
H. Wang, X. Liang, J. Huang, D. Zhang, H. Lu, Z. Liu, and Y. Bi (2010)
Plant Cell Physiol. 51, 1754-1765
   Abstract »    Full Text »    PDF »
The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening.
E. Tacken, H. Ireland, K. Gunaseelan, S. Karunairetnam, D. Wang, K. Schultz, J. Bowen, R. G. Atkinson, J. W. Johnston, J. Putterill, et al. (2010)
Plant Physiology 153, 294-305
   Abstract »    Full Text »    PDF »
Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin.
P. Sun, Q.-Y. Tian, J. Chen, and W.-H. Zhang (2010)
J. Exp. Bot. 61, 347-356
   Abstract »    Full Text »    PDF »
Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus.
J. Love, S. Bjorklund, J. Vahala, M. Hertzberg, J. Kangasjarvi, and B. Sundberg (2009)
PNAS 106, 5984-5989
   Abstract »    Full Text »    PDF »
Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco.
J. Zhou, H. Zhang, Y. Yang, Z. Zhang, H. Zhang, X. Hu, J. Chen, X.-C. Wang, and R. Huang (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?.
J. Dugardeyn, F. Vandenbussche, and D. Van Der Straeten (2008)
J. Exp. Bot. 59, 1-16
   Abstract »    Full Text »    PDF »
The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis.
A. Schweighofer, V. Kazanaviciute, E. Scheikl, M. Teige, R. Doczi, H. Hirt, M. Schwanninger, M. Kant, R. Schuurink, F. Mauch, et al. (2007)
PLANT CELL 19, 2213-2224
   Abstract »    Full Text »    PDF »
Multilevel Interactions between Ethylene and Auxin in Arabidopsis Roots.
A. N. Stepanova, J. Yun, A. V. Likhacheva, and J. M. Alonso (2007)
PLANT CELL 19, 2169-2185
   Abstract »    Full Text »    PDF »
Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation.
R. Swarup, P. Perry, D. Hagenbeek, D. Van Der Straeten, G. T.S. Beemster, G. Sandberg, R. Bhalerao, K. Ljung, and M. J. Bennett (2007)
PLANT CELL 19, 2186-2196
   Abstract »    Full Text »    PDF »
Ubiquitin, Hormones and Biotic Stress in Plants.
K. Dreher and J. Callis (2007)
Ann. Bot. 99, 787-822
   Abstract »    Full Text »    PDF »
Identification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis.
W. Wang, J. J. Esch, S.-H. Shiu, H. Agula, B. M. Binder, C. Chang, S. E. Patterson, and A. B. Bleecker (2006)
PLANT CELL 18, 3429-3442
   Abstract »    Full Text »    PDF »
The Exoribonuclease XRN4 Is a Component of the Ethylene Response Pathway in Arabidopsis.
T. Potuschak, A. Vansiri, B. M. Binder, E. Lechner, R. D. Vierstra, and P. Genschik (2006)
PLANT CELL 18, 3047-3057
   Abstract »    Full Text »    PDF »
The Ethylene-Insensitive sickle Mutant of Medicago truncatula Shows Altered Auxin Transport Regulation during Nodulation.
J. Prayitno, B. G. Rolfe, and U. Mathesius (2006)
Plant Physiology 142, 168-180
   Abstract »    Full Text »    PDF »
Ethylene Modulates Flavonoid Accumulation and Gravitropic Responses in Roots of Arabidopsis.
C. S. Buer, P. Sukumar, and G. K. Muday (2006)
Plant Physiology 140, 1384-1396
   Abstract »    Full Text »    PDF »
Systemic signalling of environmental cues in Arabidopsis leaves.
S. A. Coupe, B. G. Palmer, J. A. Lake, S. A. Overy, K. Oxborough, F. I. Woodward, J. E. Gray, and W. P. Quick (2006)
J. Exp. Bot. 57, 329-341
   Abstract »    Full Text »    PDF »
A Link between Ethylene and Auxin Uncovered by the Characterization of Two Root-Specific Ethylene-Insensitive Mutants in Arabidopsis.
A. N. Stepanova, J. M. Hoyt, A. A. Hamilton, and J. M. Alonso (2005)
PLANT CELL 17, 2230-2242
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882