Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 306 (5701): 1550-1553

Copyright © 2004 by the American Association for the Advancement of Science

Femtomolar Sensitivity of a NO Sensor from Clostridium botulinum

Pierre Nioche,1 Vladimir Berka,2 Julia Vipond,3 Nigel Minton,4 Ah-Lim Tsai,2 C. S. Raman1*

Abstract: Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.

1 Structural Biology Research Center and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.
2 Division of Hematology, Internal Medicine, University of Texas Medical School, Houston, TX 77030, USA.
3 Health Protection Agency, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
4 Center of Biomolecular Sciences and Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham NG7 2RD, UK.

Back to Top

Note added in proof: During revision of this manuscript, structural characterization (33, 34) of a similar protein was reported.

* To whom correspondence should be addressed: E-mail: c.s.raman{at}

Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide.
A. Hemschemeier, M. Duner, D. Casero, S. S. Merchant, M. Winkler, and T. Happe (2013)
PNAS 110, 10854-10859
   Abstract »    Full Text »    PDF »
Heme-assisted S-Nitrosation Desensitizes Ferric Soluble Guanylate Cyclase to Nitric Oxide.
N. B. Fernhoff, E. R. Derbyshire, E. S. Underbakke, and M. A. Marletta (2012)
J. Biol. Chem. 287, 43053-43062
   Abstract »    Full Text »    PDF »
Quaternary Structure Controls Ligand Dynamics in Soluble Guanylate Cyclase.
B.-K. Yoo, I. Lamarre, J.-L. Martin, and M. Negrerie (2012)
J. Biol. Chem. 287, 6851-6859
   Abstract »    Full Text »    PDF »
Dynamic Ligand Exchange in Soluble Guanylyl Cyclase (sGC): IMPLICATIONS FOR sGC REGULATION AND DESENSITIZATION.
A.-L. Tsai, V. Berka, I. Sharina, and E. Martin (2011)
J. Biol. Chem. 286, 43182-43192
   Abstract »    Full Text »    PDF »
Oxygen Binding and Redox Properties of the Heme in Soluble Guanylate Cyclase: IMPLICATIONS FOR THE MECHANISM OF LIGAND DISCRIMINATION.
R. Makino, S.-y. Park, E. Obayashi, T. Iizuka, H. Hori, and Y. Shiro (2011)
J. Biol. Chem. 286, 15678-15687
   Abstract »    Full Text »    PDF »
Structure of Cinaciguat (BAY 58-2667) Bound to Nostoc H-NOX Domain Reveals Insights into Heme-mimetic Activation of the Soluble Guanylyl Cyclase.
F. Martin, P. Baskaran, X. Ma, P. W. Dunten, M. Schaefer, J.-P. Stasch, A. Beuve, and F. van den Akker (2010)
J. Biol. Chem. 285, 22651-22657
   Abstract »    Full Text »    PDF »
Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding.
E. R. Derbyshire, S. Deng, and M. A. Marletta (2010)
J. Biol. Chem. 285, 17471-17478
   Abstract »    Full Text »    PDF »
A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in Chlamydomonas.
A. de Montaigu, E. Sanz-Luque, A. Galvan, and E. Fernandez (2010)
PLANT CELL 22, 1532-1548
   Abstract »    Full Text »    PDF »
A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
W. K. Erbil, M. S. Price, D. E. Wemmer, and M. A. Marletta (2009)
PNAS 106, 19753-19760
   Abstract »    Full Text »    PDF »
Oxygen- and NssR-dependent Globin Expression and Enhanced Iron Acquisition in the Response of Campylobacter to Nitrosative Stress.
C. E. Monk, B. M. Pearson, F. Mulholland, H. K. Smith, and R. K. Poole (2008)
J. Biol. Chem. 283, 28413-28425
   Abstract »    Full Text »    PDF »
Allostery in Recombinant Soluble Guanylyl Cyclase from Manduca sexta.
X. Hu, L. B. Murata, A. Weichsel, J. L. Brailey, S. A. Roberts, A. Nighorn, and W. R. Montfort (2008)
J. Biol. Chem. 283, 20968-20977
   Abstract »    Full Text »    PDF »
Bacterial Nitric-oxide Synthases Operate without a Dedicated Redox Partner.
I. Gusarov, M. Starodubtseva, Z.-Q. Wang, L. McQuade, S. J. Lippard, D. J. Stuehr, and E. Nudler (2008)
J. Biol. Chem. 283, 13140-13147
   Abstract »    Full Text »    PDF »
Analysis of the Nitric Oxide-sensing Non-heme Iron Center in the NorR Regulatory Protein.
N. P. Tucker, B. D'Autreaux, F. K. Yousafzai, S. A. Fairhurst, S. Spiro, and R. Dixon (2008)
J. Biol. Chem. 283, 908-918
   Abstract »    Full Text »    PDF »
PAS-mediated Dimerization of Soluble Guanylyl Cyclase Revealed by Signal Transduction Histidine Kinase Domain Crystal Structure.
X. Ma, N. Sayed, P. Baskaran, A. Beuve, and F. van den Akker (2008)
J. Biol. Chem. 283, 1167-1178
   Abstract »    Full Text »    PDF »
Dimerization Region of Soluble Guanylate Cyclase Characterized by Bimolecular Fluorescence Complementation in Vivo.
C. Rothkegel, P. M. Schmidt, D.-J. Atkins, L. S. Hoffmann, H. H. H. W. Schmidt, H. Schroder, and J.-P. Stasch (2007)
Mol. Pharmacol. 72, 1181-1190
   Abstract »    Full Text »    PDF »
Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes.
M. Sebaihia, M. W. Peck, N. P. Minton, N. R. Thomson, M. T.G. Holden, W. J. Mitchell, A. T. Carter, S. D. Bentley, D. R. Mason, L. Crossman, et al. (2007)
Genome Res. 17, 1082-1092
   Abstract »    Full Text »    PDF »
Molecular Basis for Nitric Oxide Dynamics and Affinity with Alcaligenes xylosoxidans Cytochrome c.
S. G. Kruglik, J.-C. Lambry, S. Cianetti, J.-L. Martin, R. R. Eady, C. R. Andrew, and M. Negrerie (2007)
J. Biol. Chem. 282, 5053-5062
   Abstract »    Full Text »    PDF »
NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism.
X. Ma, N. Sayed, A. Beuve, and F. van den Akker (2007)
EMBO J. 26, 578-588
   Abstract »    Full Text »    PDF »
Dissociation of Nitric Oxide from Soluble Guanylate Cyclase and Heme-Nitric Oxide/Oxygen Binding Domain Constructs.
J. A. Winger, E. R. Derbyshire, and M. A. Marletta (2007)
J. Biol. Chem. 282, 897-907
   Abstract »    Full Text »    PDF »
E. Martin, V. Berka, E. Bogatenkova, F. Murad, and A.-L. Tsai (2006)
J. Biol. Chem. 281, 27836-27845
   Abstract »    Full Text »    PDF »
Nitric Oxide Binding to Prokaryotic Homologs of the Soluble Guanylate Cyclase beta1 H-NOX Domain.
E. M. Boon, J. H. Davis, R. Tran, D. S. Karow, S. H. Huang, D. Pan, M. M. Miazgowicz, R. A. Mathies, and M. A. Marletta (2006)
J. Biol. Chem. 281, 21892-21902
   Abstract »    Full Text »    PDF »
Unexpected NO-dependent DNA binding by the CooA homolog from Carboxydothermus hydrogenoformans.
R. W. Clark, N. D. Lanz, A. J. Lee, R. L. Kerby, G. P. Roberts, and J. N. Burstyn (2006)
PNAS 103, 891-896
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882