Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5704): 2101-2105

Copyright © 2004 by the American Association for the Advancement of Science

Phosphorylation of Proteins by Inositol Pyrophosphates

Adolfo Saiardi,1*{dagger} Rashna Bhandari,1* Adam C. Resnick,1 Adele M. Snowman,1 Solomon H. Snyder1,2,3{ddagger}

Abstract: The inositol pyrophosphates IP7 and IP8 contain highly energetic pyrophosphate bonds. Although implicated in various biologic functions, their molecular sites of action have not been clarified. Using radiolabeled IP7, we detected phosphorylation of multiple eukaryotic proteins. We also observed phosphorylation of endogenous proteins by endogenous IP7 in yeast. Phosphorylation by IP7 is nonenzymatic and may represent a novel intracellular signaling mechanism.

1 Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
2 Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

Back to Top

* These authors contributed equally to this work.

{dagger} Present address: Medical Research Council (MRC) Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK.

{ddagger} To whom correspondence should be addressed. E-mail: ssnyder{at}bs.jhmi.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Evolution and functional cross-talk of protein post-translational modifications.
P. Beltrao, P. Bork, N. J. Krogan, and V. van Noort (2014)
Mol Syst Biol 9, 714
   Abstract »    Full Text »    PDF »
Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation.
A. Burton, C. Azevedo, C. Andreassi, A. Riccio, and A. Saiardi (2013)
PNAS 110, 18970-18975
   Abstract »    Full Text »    PDF »
Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels.
S. Ghosh, D. Shukla, K. Suman, B. J. Lakshmi, R. Manorama, S. Kumar, and R. Bhandari (2013)
Blood 122, 1478-1486
   Abstract »    Full Text »    PDF »
Functional Lysine Modification by an Intrinsically Reactive Primary Glycolytic Metabolite.
R. E. Moellering and B. F. Cravatt (2013)
Science 341, 549-553
   Abstract »    Full Text »    PDF »
New Horizons in Cellular Regulation by Inositol Polyphosphates: Insights from the Pancreatic {beta}-Cell.
C. J. Barker and P.-O. Berggren (2013)
Pharmacol. Rev. 65, 641-669
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphate Synthesis by Inositol Hexakisphosphate Kinase 1 Is Required for Homologous Recombination Repair.
R. S. Jadav, M. V. L. Chanduri, S. Sengupta, and R. Bhandari (2013)
J. Biol. Chem. 288, 3312-3321
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphates Modulate S Phase Progression after Pheromone-induced Arrest in Saccharomyces cerevisiae.
H. Banfic, A. Bedalov, J. D. York, and D. Visnjic (2013)
J. Biol. Chem. 288, 1717-1725
   Abstract »    Full Text »    PDF »
Influence of Inositol Pyrophosphates on Cellular Energy Dynamics.
Z. Szijgyarto, A. Garedew, C. Azevedo, and A. Saiardi (2011)
Science 334, 802-805
   Abstract »    Full Text »    PDF »
Identification of an Evolutionarily Conserved Family of Inorganic Polyphosphate Endopolyphosphatases.
A. Lonetti, Z. Szijgyarto, D. Bosch, O. Loss, C. Azevedo, and A. Saiardi (2011)
J. Biol. Chem. 286, 31966-31974
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphates as Mammalian Cell Signals.
A. Chakraborty, S. Kim, and S. H. Snyder (2011)
Science Signaling 4, re1
   Abstract »    Full Text »    PDF »
Mind Molecules.
S. H. Snyder (2011)
J. Biol. Chem. 286, 21023-21032
   Abstract »    Full Text »    PDF »
Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB.
D. Maag, M. J. Maxwell, D. A. Hardesty, K. L. Boucher, N. Choudhari, A. G. Hanno, J. F. Ma, A. S. Snowman, J. W. Pietropaoli, R. Xu, et al. (2011)
PNAS 108, 1391-1396
   Abstract »    Full Text »    PDF »
Characterization of O-Phosphohydroxyproline in Rat {alpha}-Crystallin A.
A. Kuhlberg, M. Haid, and S. Metzger (2010)
J. Biol. Chem. 285, 31484-31490
   Abstract »    Full Text »    PDF »
Asp1, a Conserved 1/3 Inositol Polyphosphate Kinase, Regulates the Dimorphic Switch in Schizosaccharomyces pombe.
J. Pohlmann and U. Fleig (2010)
Mol. Cell. Biol. 30, 4535-4547
   Abstract »    Full Text »    PDF »
Reply to Shears: As knowledge of inositol pyrophosphates advances, wonder recedes.
C. Azevedo and A. Saiardi (2010)
PNAS 107, E18
   Full Text »    PDF »
The long-awaited demonstration of protein pyrophosphorylation by IP7 in vivo?.
S. Shears (2010)
PNAS 107, E17
   Full Text »    PDF »
Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release.
C. Azevedo, A. Burton, E. Ruiz-Mateos, M. Marsh, and A. Saiardi (2009)
PNAS 106, 21161-21166
   Abstract »    Full Text »    PDF »
Diphosphoinositol Polyphosphates: Metabolic Messengers?.
S. B. Shears (2009)
Mol. Pharmacol. 76, 236-252
   Abstract »    Full Text »    PDF »
Identification of myo-Inositol-3-phosphate Synthase Isoforms: CHARACTERIZATION, EXPRESSION, AND PUTATIVE ROLE OF A 16-kDa {gamma}c ISOFORM.
R. S. Seelan, J. Lakshmanan, M. F. Casanova, and R. N. Parthasarathy (2009)
J. Biol. Chem. 284, 9443-9457
   Abstract »    Full Text »    PDF »
Structural Analysis and Detection of Biological Inositol Pyrophosphates Reveal That the Family of VIP/Diphosphoinositol Pentakisphosphate Kinases Are 1/3-Kinases.
H. Lin, P. C. Fridy, A. A. Ribeiro, J. H. Choi, D. K. Barma, G. Vogel, J. R. Falck, S. B. Shears, J. D. York, and G. W. Mayr (2009)
J. Biol. Chem. 284, 1863-1872
   Abstract »    Full Text »    PDF »
Cellular Energetic Status Supervises the Synthesis of Bis-Diphosphoinositol Tetrakisphosphate Independently of AMP-Activated Protein Kinase.
K. Choi, E. Mollapour, J. H. Choi, and S. B. Shears (2008)
Mol. Pharmacol. 74, 527-536
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Phospholipase C Regulates Transcription of Msn2p-Dependent Stress-Responsive Genes.
A. Demczuk, N. Guha, P. H. Nguyen, P. Desai, J. Chang, K. Guzinska, J. Rollins, C. C. Ghosh, L. Goodwin, and A. Vancura (2008)
Eukaryot. Cell 7, 967-979
   Abstract »    Full Text »    PDF »
The Nucleolus Exhibits an Osmotically Regulated Gatekeeping Activity That Controls the Spatial Dynamics and Functions of Nucleolin.
L. Yang, J. M. Reece, J. Cho, C. D. Bortner, and S. B. Shears (2008)
J. Biol. Chem. 283, 11823-11831
   Abstract »    Full Text »    PDF »
Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis.
R. Bhandari, K. R. Juluri, A. C. Resnick, and S. H. Snyder (2008)
PNAS 105, 2349-2353
   Abstract »    Full Text »    PDF »
HSP90 regulates cell survival via inositol hexakisphosphate kinase-2.
A. Chakraborty, M. A. Koldobskiy, K. M. Sixt, K. R. Juluri, A. K. Mustafa, A. M. Snowman, D. B. van Rossum, R. L. Patterson, and S. H. Snyder (2008)
PNAS 105, 1134-1139
   Abstract »    Full Text »    PDF »
A Discrete Signaling Function for an Inositol Pyrophosphate.
P. W. Majerus (2007)
Sci. STKE 2007, pe72
   Abstract »    Full Text »    PDF »
IP7 Debut in Insulin Release.
S. Nagamatsu and M. Ohara-Imaizumi (2007)
Science 318, 1249-1250
   Abstract »    Full Text »    PDF »
Requirement of Inositol Pyrophosphates for Full Exocytotic Capacity in Pancreatic {beta} Cells.
C. Illies, J. Gromada, R. Fiume, B. Leibiger, J. Yu, K. Juhl, S.-N. Yang, D. K. Barma, J. R. Falck, A. Saiardi, et al. (2007)
Science 318, 1299-1302
   Abstract »    Full Text »    PDF »
Cloning and Characterization of Two Human VIP1-like Inositol Hexakisphosphate and Diphosphoinositol Pentakisphosphate Kinases.
P. C. Fridy, J. C. Otto, D. E. Dollins, and J. D. York (2007)
J. Biol. Chem. 282, 30754-30762
   Abstract »    Full Text »    PDF »
Purification, Sequencing, and Molecular Identification of a Mammalian PP-InsP5 Kinase That Is Activated When Cells Are Exposed to Hyperosmotic Stress.
J. H. Choi, J. Williams, J. Cho, J. R. Falck, and S. B. Shears (2007)
J. Biol. Chem. 282, 30763-30775
   Abstract »    Full Text »    PDF »
Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases.
J. C. Otto, P. Kelly, S.-T. Chiou, and J. D. York (2007)
PNAS 104, 15653-15658
   Abstract »    Full Text »    PDF »
Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event.
R. Bhandari, A. Saiardi, Y. Ahmadibeni, A. M. Snowman, A. C. Resnick, T. Z. Kristiansen, H. Molina, A. Pandey, J. K. Werner Jr., K. R. Juluri, et al. (2007)
PNAS 104, 15305-15310
   Abstract »    Full Text »    PDF »
Integration of Inositol Phosphate Signaling Pathways via Human ITPK1.
P. P. Chamberlain, X. Qian, A. R. Stiles, J. Cho, D. H. Jones, S. A. Lesley, E. A. Grabau, S. B. Shears, and G. Spraggon (2007)
J. Biol. Chem. 282, 28117-28125
   Abstract »    Full Text »    PDF »
Effect of Inositol Hexakisphosphate Kinase 2 on Transforming Growth Factor beta-activated Kinase 1 and NF-{kappa}B Activation.
B. H. Morrison, J. A. Bauer, J. A. Lupica, Z. Tang, H. Schmidt, J. A. DiDonato, and D. J. Lindner (2007)
J. Biol. Chem. 282, 15349-15356
   Abstract »    Full Text »    PDF »
A Conserved Family of Enzymes That Phosphorylate Inositol Hexakisphosphate.
S. Mulugu, W. Bai, P. C. Fridy, R. J. Bastidas, J. C. Otto, D. E. Dollins, T. A. Haystead, A. A. Ribeiro, and J. D. York (2007)
Science 316, 106-109
   Abstract »    Full Text »    PDF »
Regulation of a Cyclin-CDK-CDK Inhibitor Complex by Inositol Pyrophosphates.
Y.-S. Lee, S. Mulugu, J. D. York, and E. K. O'Shea (2007)
Science 316, 109-112
   Abstract »    Full Text »    PDF »
Inhibition of chronic ulcerative colitis associated adenocarcinoma development in mice by inositol compounds.
J. Liao, D. N. Seril, A. L. Yang, G. G. Lu, and G.-Y. Yang (2007)
Carcinogenesis 28, 446-454
   Abstract »    Full Text »    PDF »
Spatial Expression Patterns and Biochemical Properties Distinguish a Second myo-Inositol Monophosphatase IMPA2 from IMPA1.
T. Ohnishi, H. Ohba, K.-C. Seo, J. Im, Y. Sato, Y. Iwayama, T. Furuichi, S.-K. Chung, and T. Yoshikawa (2007)
J. Biol. Chem. 282, 637-646
   Abstract »    Full Text »    PDF »
Protein Kinase CK2 Is Inhibited by Human Nucleolar Phosphoprotein p140 in an Inositol Hexakisphosphate-dependent Manner.
Y.-K. Kim, K. J. Lee, H. Jeon, and Y. G. Yu (2006)
J. Biol. Chem. 281, 36752-36757
   Abstract »    Full Text »    PDF »
Expression of FLR1 Transporter Requires Phospholipase C and Is Repressed by Mediator.
C. Romero, P. Desai, N. DeLillo, and A. Vancura (2006)
J. Biol. Chem. 281, 5677-5685
   Abstract »    Full Text »    PDF »
Inositide evolution - towards turtle domination?.
R. F Irvine (2005)
J. Physiol. 566, 295-300
   Abstract »    Full Text »    PDF »
Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases.
A. Saiardi, A. C. Resnick, A. M. Snowman, B. Wendland, and S. H. Snyder (2005)
PNAS 102, 1911-1914
   Abstract »    Full Text »    PDF »
SIGNAL TRANSDUCTION: Unexpected Mediators of Protein Phosphorylation.
J. D. York and T. Hunter (2004)
Science 306, 2053-2055
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882