Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 306 (5705): 2246-2249

Copyright © 2004 by the American Association for the Advancement of Science

Use of Logic Relationships to Decipher Protein Network Organization

Peter M. Bowers,1,2 Shawn J. Cokus,3 David Eisenberg,1,2 Todd O. Yeates2,4*

Abstract: A major focus of genome research is to decipher the networks of molecular interactions that underlie cellular function. We describe a computational approach for identifying detailed relationships between proteins on the basis of genomic data. Logic analysis of phylogenetic profiles identifies triplets of proteins whose presence or absence obey certain logic relationships. For example, protein C may be present in a genome only if proteins A and B are both present. The method reveals many previously unidentified higher order relationships. These relationships illustrate the complexities that arise in cellular networks because of branching and alternate pathways, and they also facilitate assignment of cellular functions to uncharacterized proteins.

1 Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
2 Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
3 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
4 Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.

* To whom correspondence should be addressed. E-mail: yeates{at}mbi.ucla.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Detecting biological network organization and functional gene orthologs.
J. Cui, T. F. DeLuca, J.-Y. Jung, and D. P. Wall (2011)
Bioinformatics 27, 2919-2920
   Abstract »    Full Text »    PDF »
Protein co-evolution, co-adaptation and interactions.
F. Pazos and A. Valencia (2008)
EMBO J. 27, 2648-2655
   Abstract »    Full Text »    PDF »
Logical Identification of an Allantoinase Analog (puuE) Recruited from Polysaccharide Deacetylases.
I. Ramazzina, L. Cendron, C. Folli, R. Berni, D. Monteverdi, G. Zanotti, and R. Percudani (2008)
J. Biol. Chem. 283, 23295-23304
   Abstract »    Full Text »    PDF »
Microbial genotype-phenotype mapping by class association rule mining.
M. Tamura and P. D'haeseleer (2008)
Bioinformatics 24, 1523-1529
   Abstract »    Full Text »    PDF »
Assigning functional linkages to proteins using phylogenetic profiles and continuous phenotypes.
O. Gonzalez and R. Zimmer (2008)
Bioinformatics 24, 1257-1263
   Abstract »    Full Text »    PDF »
Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution.
P. R Kensche, V. van Noort, B. E Dutilh, and M. A Huynen (2008)
J R Soc Interface 5, 151-170
   Abstract »    Full Text »    PDF »
Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
M. Masso and I. I. Vaisman (2007)
Bioinformatics 23, 3155-3161
   Abstract »    Full Text »    PDF »
Extracting three-way gene interactions from microarray data.
J. Zhang, Y. Ji, and L. Zhang (2007)
Bioinformatics 23, 2903-2909
   Abstract »    Full Text »    PDF »
Detecting the Coevolution of Biosequences An Example of RNA Interaction Prediction.
C.-H. Yeang, J. F. J. Darot, H. F. Noller, and D. Haussler (2007)
Mol. Biol. Evol. 24, 2119-2131
   Abstract »    Full Text »    PDF »
Reciprocal Illumination in the Gene Content Tree of Life.
E. K. Lienau, R. DeSalle, J. A. Rosenfeld, and P. J. Planet (2006)
Syst Biol 55, 441-453
   Abstract »    Full Text »    PDF »
Information-based clustering.
N. Slonim, G. S. Atwal, G. Tkacik, and W. Bialek (2005)
PNAS 102, 18297-18302
   Abstract »    Full Text »    PDF »
Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations.
O. Alter and G. H. Golub (2005)
PNAS 102, 17559-17564
   Abstract »    Full Text »    PDF »
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
M. Sardiello, I. Annunziata, G. Roma, and A. Ballabio (2005)
Hum. Mol. Genet. 14, 3203-3217
   Abstract »    Full Text »    PDF »
Lasting impressions: Motifs in protein-protein maps may provide footprints of evolutionary events.
J. J. Rice, A. Kershenbaum, and G. Stolovitzky (2005)
PNAS 102, 3173-3174
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882