Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5706): 130-133

Copyright © 2005 by the American Association for the Advancement of Science

The Centromeric Protein Sgo1 Is Required to Sense Lack of Tension on Mitotic Chromosomes

Vahan B. Indjeian, Bodo M. Stern,* Andrew W. Murray{dagger}

Abstract: Chromosome alignment on the mitotic spindle is monitored by the spindle checkpoint. We identify Sgo1, a protein involved in meiotic chromosome cohesion, as a spindle checkpoint component. Budding yeast cells with mutations in SGO1 respond normally to microtubule depolymerization but not to lack of tension at the kinetochore, and they have difficulty attaching sister chromatids to opposite poles of the spindle. Sgo1 is thus required for sensing tension between sister chromatids during mitosis, and its degradation when they separate may prevent cell cycle arrest and chromosome loss in anaphase, a time when sister chromatids are no longer under tension.

Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

Back to Top

* Present address: Cell Press, 1100 Massachusetts Avenue, Cambridge, MA 02138, USA.

{dagger} To whom correspondence should be addressed. E-mail: amurray{at}

Chromosome Segregation in Budding Yeast: Sister Chromatid Cohesion and Related Mechanisms.
A. L. Marston (2014)
Genetics 196, 31-63
   Abstract »    Full Text »    PDF »
The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment.
F. Jin and Y. Wang (2013)
PNAS 110, 21036-21041
   Abstract »    Full Text »    PDF »
Kinetochore Function and Chromosome Segregation Rely on Critical Residues in Histones H3 and H4 in Budding Yeast.
T. M. Ng, T. L. Lenstra, N. Duggan, S. Jiang, S. Ceto, F. C. P. Holstege, J. Dai, J. D. Boeke, and S. Biggins (2013)
Genetics 195, 795-807
   Abstract »    Full Text »    PDF »
The Composition, Functions, and Regulation of the Budding Yeast Kinetochore.
S. Biggins (2013)
Genetics 194, 817-846
   Abstract »    Full Text »    PDF »
Slk19 clusters kinetochores and facilitates chromosome bipolar attachment.
D. Richmond, R. Rizkallah, F. Liang, M. M. Hurt, and Y. Wang (2013)
Mol. Biol. Cell 24, 566-577
   Abstract »    Full Text »    PDF »
Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere.
K. F. Verzijlbergen, O. O. Nerusheva, D. Kelly, A. Kerr, D. Clift, F. de Lima Alves, J. Rappsilber, and A. L. Marston (2013)
eLife Sci 3, e01374
   Abstract »    Full Text »    PDF »
Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression.
R. M. Ricke, K. B. Jeganathan, L. Malureanu, A. M. Harrison, and J. M. van Deursen (2012)
J. Cell Biol. 199, 931-949
   Abstract »    Full Text »    PDF »
Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation.
S. Kawashima, Y. Nakabayashi, K. Matsubara, N. Sano, T. Enomoto, K. Tanaka, M. Seki, and M. Horikoshi (2011)
EMBO J. 30, 3353-3367
   Abstract »    Full Text »    PDF »
A mad partner for Shugoshin in meiosis.
H. Yu (2011)
EMBO J. 30, 2759-2761
   Abstract »    Full Text »    PDF »
Shugoshin is a Mad1/Cdc20-like interactor of Mad2.
M. Orth, B. Mayer, K. Rehm, U. Rothweiler, D. Heidmann, T. A. Holak, and O. Stemmann (2011)
EMBO J. 30, 2868-2880
   Abstract »    Full Text »    PDF »
Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis.
E. L. Barnhart, R. K. Dorer, A. W. Murray, and S. C. Schuyler (2011)
Mol. Biol. Cell 22, 2448-2457
   Abstract »    Full Text »    PDF »
Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast.
Z. Storchova, J. S. Becker, N. Talarek, S. Kogelsberger, and D. Pellman (2011)
Mol. Biol. Cell 22, 1473-1485
   Abstract »    Full Text »    PDF »
Temporal and Spatial Regulation of Targeting Aurora B to the Inner Centromere.
Y. Watanabe (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Kinetochore-microtubule interactions: steps towards bi-orientation.
T. U. Tanaka (2010)
EMBO J. 29, 4070-4082
   Abstract »    Full Text »    PDF »
Proteins Required for Centrosome Clustering in Cancer Cells.
B. Leber, B. Maier, F. Fuchs, J. Chi, P. Riffel, S. Anderhub, L. Wagner, A. D. Ho, J. L. Salisbury, M. Boutros, et al. (2010)
Science Translational Medicine 2, 33ra38
   Abstract »    Full Text »    PDF »
Histone H3 Exerts a Key Function in Mitotic Checkpoint Control.
J. Luo, X. Xu, H. Hall, E. M. Hyland, J. D. Boeke, T. Hazbun, and M.-H. Kuo (2010)
Mol. Cell. Biol. 30, 537-549
   Abstract »    Full Text »    PDF »
Phosphorylation of H2A by Bub1 Prevents Chromosomal Instability Through Localizing Shugoshin.
S. A. Kawashima, Y. Yamagishi, T. Honda, K.-i. Ishiguro, and Y. Watanabe (2010)
Science 327, 172-177
   Abstract »    Full Text »    PDF »
Centromere Replication Timing Determines Different Forms of Genomic Instability in Saccharomyces cerevisiae Checkpoint Mutants During Replication Stress.
W. Feng, J. Bachant, D. Collingwood, M. K. Raghuraman, and B. J. Brewer (2009)
Genetics 183, 1249-1260
   Abstract »    Full Text »    PDF »
Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin.
H. Windecker, M. Langegger, S. Heinrich, and S. Hauf (2009)
EMBO Rep. 10, 1022-1028
   Abstract »    Full Text »    PDF »
Efficient Chromosome Biorientation and the Tension Checkpoint in Saccharomyces cerevisiae both Require Bir1.
V. Makrantoni and M. J. R. Stark (2009)
Mol. Cell. Biol. 29, 4552-4562
   Abstract »    Full Text »    PDF »
Shugoshin prevents cohesin cleavage by PP2ACdc55-dependent inhibition of separase.
D. Clift, F. Bizzari, and A. L. Marston (2009)
Genes & Dev. 23, 766-780
   Abstract »    Full Text »    PDF »
Multiple Anaphase-promoting Complex/Cyclosome Degrons Mediate the Degradation of Human Sgo1.
Z. Karamysheva, L. A. Diaz-Martinez, S. E. Crow, B. Li, and H. Yu (2009)
J. Biol. Chem. 284, 1772-1780
   Abstract »    Full Text »    PDF »
Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice.
E. Llano, R. Gomez, C. Gutierrez-Caballero, Y. Herran, M. Sanchez-Martin, L. Vazquez-Quinones, T. Hernandez, E. de Alava, A. Cuadrado, J. L. Barbero, et al. (2008)
Genes & Dev. 22, 2400-2413
   Abstract »    Full Text »    PDF »
Shugoshin Promotes Sister Kinetochore Biorientation in Saccharomyces cerevisiae.
B. M. Kiburz, A. Amon, and A. L. Marston (2008)
Mol. Biol. Cell 19, 1199-1209
   Abstract »    Full Text »    PDF »
Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores.
E. M.J. King, N. Rachidi, N. Morrice, K. G. Hardwick, and M. J.R. Stark (2007)
Genes & Dev. 21, 1163-1168
   Abstract »    Full Text »    PDF »
Shugoshin 2 Regulates Localization of the Chromosomal Passenger Proteins in Fission Yeast Mitosis.
V. Vanoosthuyse, S. Prykhozhij, and K. G. Hardwick (2007)
Mol. Biol. Cell 18, 1657-1669
   Abstract »    Full Text »    PDF »
RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females.
S. Kuznetsov, M. Pellegrini, K. Shuda, O. Fernandez-Capetillo, Y. Liu, B. K. Martin, S. Burkett, E. Southon, D. Pati, L. Tessarollo, et al. (2007)
J. Cell Biol. 176, 581-592
   Abstract »    Full Text »    PDF »
Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres.
S. A. Kawashima, T. Tsukahara, M. Langegger, S. Hauf, T. S. Kitajima, and Y. Watanabe (2007)
Genes & Dev. 21, 420-435
   Abstract »    Full Text »    PDF »
Chromosome cohesion in mitosis and meiosis.
K.-i. Ishiguro and Y. Watanabe (2007)
J. Cell Sci. 120, 367-369
   Full Text »    PDF »
Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis.
R. Gomez, A. Valdeolmillos, M. T. Parra, A. Viera, C. Carreiro, F. Roncal, J. S. Rufas, J. L. Barbero, and J. A. Suja (2007)
EMBO Rep. 8, 173-180
   Abstract »    Full Text »    PDF »
Coordinated Requirements of Human Topo II and Cohesin for Metaphase Centromere Alignment under Mad2-dependent Spindle Checkpoint Surveillance.
Y. Toyoda and M. Yanagida (2006)
Mol. Biol. Cell 17, 2287-2302
   Abstract »    Full Text »    PDF »
The Role of Cdc55 in the Spindle Checkpoint Is through Regulation of Mitotic Exit in Saccharomyces cerevisiae.
C. M. Yellman and D. J. Burke (2006)
Mol. Biol. Cell 17, 658-666
   Abstract »    Full Text »    PDF »
Phenotypic Switching in Candida glabrata Accompanied by Changes in Expression of Genes with Deduced Functions in Copper Detoxification and Stress.
T. Srikantha, R. Zhao, K. Daniels, J. Radke, and D. R. Soll (2005)
Eukaryot. Cell 4, 1434-1445
   Abstract »    Full Text »    PDF »
Dynamic molecular linkers of the genome: the first decade of SMC proteins.
A. Losada and T. Hirano (2005)
Genes & Dev. 19, 1269-1287
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882