Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5707): 247-249

Copyright © 2005 by the American Association for the Advancement of Science

Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool

Brian R. Keegan,1 Jessica L. Feldman,1 Gerrit Begemann,2 Philip W. Ingham,3 Deborah Yelon1*

Abstract: Organogenesis begins with specification of a progenitor cell population, the size of which provides a foundation for the organ's final dimensions. Here, we present a new mechanism for regulating the number of progenitor cells by limiting their density within a competent region. We demonstrate that retinoic acid signaling restricts cardiac specification in the zebrafish embryo. Reduction of retinoic acid signaling causes formation of an excess of cardiomyocytes, via fate transformations that increase cardiac progenitor density within a multipotential zone. Thus, retinoic acid signaling creates a balance between cardiac and noncardiac identities, thereby refining the dimensions of the cardiac progenitor pool.

1 Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
2 Lehrstuhl Zoology/Evolutionary Biology, University of Konstanz, 78457 Konstanz, Germany.
3 Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield School of Medicine, Firth Court, Western Bank, Sheffield S10 2TN, UK.

* To whom correspondence should be addressed. E-mail: yelon{at}

Zebrafish in the Study of Early Cardiac Development.
J. Liu and D. Y. R. Stainier (2012)
Circ. Res. 110, 870-874
   Abstract »    Full Text »    PDF »
Retinoic Acid Signaling Sequentially Controls Visceral and Heart Laterality in Zebrafish.
S. Huang, J. Ma, X. Liu, Y. Zhang, and L. Luo (2011)
J. Biol. Chem. 286, 28533-28543
   Abstract »    Full Text »    PDF »
Zebrafish as a model to study cardiac development and human cardiac disease.
J. Bakkers (2011)
Cardiovasc Res 91, 279-288
   Abstract »    Full Text »    PDF »
Dynamic control of head mesoderm patterning.
I. Bothe, G. Tenin, A. Oseni, and S. Dietrich (2011)
Development 138, 2807-2821
   Abstract »    Full Text »    PDF »
Cardiopoietic Factors: Extracellular Signals for Cardiac Lineage Commitment.
M. Noseda, T. Peterkin, F. C. Simoes, R. Patient, and M. D. Schneider (2011)
Circ. Res. 108, 129-152
   Abstract »    Full Text »    PDF »
Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2.
T. Brade, S. Kumar, T. J. Cunningham, C. Chatzi, X. Zhao, S. Cavallero, P. Li, H. M. Sucov, P. Ruiz-Lozano, and G. Duester (2011)
Development 138, 139-148
   Abstract »    Full Text »    PDF »
Myocardial Lineage Development.
S. M. Evans, D. Yelon, F. L. Conlon, and M. L. Kirby (2010)
Circ. Res. 107, 1428-1444
   Abstract »    Full Text »    PDF »
Inhibition of Histone Deacetylase Expands the Renal Progenitor Cell Population.
E. D. de Groh, L. M. Swanhart, C. C. Cosentino, R. L. Jackson, W. Dai, C. A. Kitchens, B. W. Day, T. E. Smithgall, and N. A. Hukriede (2010)
J. Am. Soc. Nephrol. 21, 794-802
   Abstract »    Full Text »    PDF »
Forming Patterns in Development without Morphogen Gradients: Scattered Differentiation and Sorting Out.
R. R. Kay and C. R.L. Thompson (2009)
Cold Spring Harb Perspect Biol 1, a001503
   Abstract »    Full Text »    PDF »
Signaling Pathways Controlling Second Heart Field Development.
F. Rochais, K. Mesbah, and R. G. Kelly (2009)
Circ. Res. 104, 933-942
   Abstract »    Full Text »    PDF »
Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential.
N. A. Thomas, M. Koudijs, F. J. M. van Eeden, A. L. Joyner, and D. Yelon (2008)
Development 135, 3789-3799
   Abstract »    Full Text »    PDF »
Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton.
K. M. Spoorendonk, J. Peterson-Maduro, J. Renn, T. Trowe, S. Kranenbarg, C. Winkler, and S. Schulte-Merker (2008)
Development 135, 3765-3774
   Abstract »    Full Text »    PDF »
Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart.
J. Chen, S. A. Carney, R. E. Peterson, and W. Heideman (2008)
Physiol Genomics 33, 148-158
   Abstract »    Full Text »    PDF »
Retinoic acid deficiency alters second heart field formation.
L. Ryckebusch, Z. Wang, N. Bertrand, S.-C. Lin, X. Chi, R. Schwartz, S. Zaffran, and K. Niederreither (2008)
PNAS 105, 2913-2918
   Abstract »    Full Text »    PDF »
Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis.
Z. Kornyei, E. Gocza, R. Ruhl, B. Orsolits, E. Voros, B. Szabo, B. Vagovits, and E. Madarasz (2007)
FASEB J 21, 2496-2509
   Abstract »    Full Text »    PDF »
Signal Transduction in Early Heart Development (II): Ventricular Chamber Specification, Trabeculation, and Heart Valve Formation.
M. Wagner and M. A. Q. Siddiqui (2007)
Experimental Biology and Medicine 232, 866-880
   Abstract »    Full Text »    PDF »
Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells.
S. Ueno, G. Weidinger, T. Osugi, A. D. Kohn, J. L. Golob, L. Pabon, H. Reinecke, R. T. Moon, and C. E. Murry (2007)
PNAS 104, 9685-9690
   Abstract »    Full Text »    PDF »
Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.
Y. Gibert, A. Gajewski, A. Meyer, and G. Begemann (2006)
Development 133, 2649-2659
   Abstract »    Full Text »    PDF »
Life and Death of Cardiac Stem Cells: A Paradigm Shift in Cardiac Biology.
P. Anversa, J. Kajstura, A. Leri, and R. Bolli (2006)
Circulation 113, 1451-1463
   Full Text »    PDF »
Cardiac Stem Cells and Mechanisms of Myocardial Regeneration.
A. Leri, J. Kajstura, and P. Anversa (2005)
Physiol Rev 85, 1373-1416
   Abstract »    Full Text »    PDF »
The Zebrafish Retinol Dehydrogenase, rdh1l, Is Essential for Intestinal Development and Is Regulated by the Tumor Suppressor Adenomatous Polyposis Coli.
L. D. Nadauld, D. N. Shelton, S. Chidester, H. J. Yost, and D. A. Jones (2005)
J. Biol. Chem. 280, 30490-30495
   Abstract »    Full Text »    PDF »
Altered retinoid homeostasis catalyzed by a nicotine metabolite: Implications in macular degeneration and normal development.
A. P. Brogan, T. J. Dickerson, G. E. Boldt, and K. D. Janda (2005)
PNAS 102, 10433-10438
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882