Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5707): 251-254

Copyright © 2005 by the American Association for the Advancement of Science

No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation

Jun Tomita, Masato Nakajima, Takao Kondo, Hideo Iwasaki*

Abstract: An autoregulatory transcription-translation feedback loop is thought to be essential in generating circadian rhythms in any model organism. In the cyanobacterium Synechococcus elongatus, the essential clock protein KaiC is proposed to form this type of transcriptional negative feedback. Nevertheless, we demonstrate here temperature-compensated, robust circadian cycling of KaiC phosphorylation even without kaiBC messenger RNA accumulation under continuous dark conditions. This rhythm persisted in the presence of a transcription or translation inhibitor. Moreover, kinetic profiles in the ratio of KaiC autophosphorylation-dephosphorylation were also temperature compensated in vitro. Thus, the cyanobacterial clock can keep time independent of de novo transcription and translation processes.

Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

* To whom correspondence should be addressed. E-mail: iwasaki{at}

A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock.
C. Brettschneider, R. J. Rose, S. Hertel, I. M. Axmann, A. J. R. Heck, and M. Kollmann (2014)
Mol Syst Biol 6, 389
   Abstract »    Full Text »    PDF »
Functioning and robustness of a bacterial circadian clock.
S. Clodong, U. Duhring, L. Kronk, A. Wilde, I. Axmann, H. Herzel, and M. Kollmann (2014)
Mol Syst Biol 3, 90
   Abstract »    Full Text »    PDF »
Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria.
F. Naef (2014)
Mol Syst Biol 1, 2005.0019
   Abstract »    Full Text »    PDF »
No Time for Spruce: Rapid Dampening of Circadian Rhythms in Picea abies (L. Karst).
N. Gyllenstrand, A. Karlgren, D. Clapham, K. Holm, A. Hall, P. D. Gould, T. Kallman, and U. Lagercrantz (2014)
Plant Cell Physiol. 55, 535-550
   Abstract »    Full Text »    PDF »
Hypersensitive Photic Responses and Intact Genome-Wide Transcriptional Control without the KaiC Phosphorylation Cycle in the Synechococcus Circadian System.
M. Umetani, N. Hosokawa, Y. Kitayama, and H. Iwasaki (2014)
J. Bacteriol. 196, 548-555
   Abstract »    Full Text »    PDF »
Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction.
J. Snijder, R. J. Burnley, A. Wiegard, A. S. J. Melquiond, A. M. J. J. Bonvin, I. M. Axmann, and A. J. R. Heck (2014)
PNAS 111, 1379-1384
   Abstract »    Full Text »    PDF »
Elucidation of the Role of Clp Protease Components in Circadian Rhythm by Genetic Deletion and Overexpression in Cyanobacteria.
K. Imai, Y. Kitayama, and T. Kondo (2013)
J. Bacteriol. 195, 4517-4526
   Abstract »    Full Text »    PDF »
Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus.
N. Hosokawa, H. Kushige, and H. Iwasaki (2013)
PNAS 110, 14486-14491
   Abstract »    Full Text »    PDF »
Adaptation of molecular circadian clockwork to environmental changes: a role for alternative splicing and miRNAs.
O. Bartok, C. P. Kyriacou, J. Levine, A. Sehgal, and S. Kadener (2013)
Proc R Soc B 280, 20130011
   Abstract »    Full Text »    PDF »
Robust Circadian Oscillations in Growing Cyanobacteria Require Transcriptional Feedback.
S.-W. Teng, S. Mukherji, J. R. Moffitt, S. de Buyl, and E. K. O'Shea (2013)
Science 340, 737-740
   Abstract »    Full Text »    PDF »
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
A. Wiegard, A. K. Dorrich, H.-T. Deinzer, C. Beck, A. Wilde, J. Holtzendorff, and I. M. Axmann (2013)
Microbiology 159, 948-958
   Abstract »    Full Text »    PDF »
Methylation of Histone H3 on Lysine 4 by the Lysine Methyltransferase SET1 Protein Is Needed for Normal Clock Gene Expression.
H. Raduwan, A. L. Isola, and W. J. Belden (2013)
J. Biol. Chem. 288, 8380-8390
   Abstract »    Full Text »    PDF »
Circadian Control of Chloroplast Transcription by a Nuclear-Encoded Timing Signal.
Z. B. Noordally, K. Ishii, K. A. Atkins, S. J. Wetherill, J. Kusakina, E. J. Walton, M. Kato, M. Azuma, K. Tanaka, M. Hanaoka, et al. (2013)
Science 339, 1316-1319
   Abstract »    Full Text »    PDF »
Genome-Wide and Heterocyst-Specific Circadian Gene Expression in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120.
H. Kushige, H. Kugenuma, M. Matsuoka, S. Ehira, M. Ohmori, and H. Iwasaki (2013)
J. Bacteriol. 195, 1276-1284
   Abstract »    Full Text »    PDF »
Nascent-Seq analysis of Drosophila cycling gene expression.
J. Rodriguez, C.-H. A. Tang, Y. L. Khodor, S. Vodala, J. S. Menet, and M. Rosbash (2013)
PNAS 110, E275-E284
   Abstract »    Full Text »    PDF »
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
S. Perez-Santangelo, R. G. Schlaen, and M. J. Yanovsky (2013)
Briefings in Functional Genomics 12, 13-24
   Abstract »    Full Text »    PDF »
Rhythmic ring-ring stacking drives the circadian oscillator clockwise.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2012)
PNAS 109, 16847-16851
   Abstract »    Full Text »    PDF »
RpaB, Another Response Regulator Operating Circadian Clock-dependent Transcriptional Regulation in Synechococcus elongatus PCC 7942.
M. Hanaoka, N. Takai, N. Hosokawa, M. Fujiwara, Y. Akimoto, N. Kobori, H. Iwasaki, T. Kondo, and K. Tanaka (2012)
J. Biol. Chem. 287, 26321-26327
   Abstract »    Full Text »    PDF »
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
T. S. Hatakeyama and K. Kaneko (2012)
PNAS 109, 8109-8114
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus.
N. Hosokawa, T. S. Hatakeyama, T. Kojima, Y. Kikuchi, H. Ito, and H. Iwasaki (2011)
PNAS 108, 15396-15401
   Abstract »    Full Text »    PDF »
Circadian Clock Parameter Measurement: Characterization of Clock Transcription Factors Using Surface Plasmon Resonance.
J. S. O'Neill, G. van Ooijen, T. Le Bihan, and A. J. Millar (2011)
J Biol Rhythms 26, 91-98
   Abstract »    PDF »
Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution.
Y. Murayama, A. Mukaiyama, K. Imai, Y. Onoue, A. Tsunoda, A. Nohara, T. Ishida, Y. Maeda, K. Terauchi, T. Kondo, et al. (2011)
EMBO J. 30, 68-78
   Abstract »    Full Text »    PDF »
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
D. Zwicker, D. K. Lubensky, and P. R. ten Wolde (2010)
PNAS 107, 22540-22545
   Abstract »    Full Text »    PDF »
Intermolecular associations determine the dynamics of the circadian KaiABC oscillator.
X. Qin, M. Byrne, T. Mori, P. Zou, D. R. Williams, H. Mchaourab, and C. H. Johnson (2010)
PNAS 107, 14805-14810
   Abstract »    Full Text »    PDF »
Oscillations in supercoiling drive circadian gene expression in cyanobacteria.
V. Vijayan, R. Zuzow, and E. K. O'Shea (2009)
PNAS 106, 22564-22568
   Abstract »    Full Text »    PDF »
CKI{varepsilon}/{delta}-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock.
Y. Isojima, M. Nakajima, H. Ukai, H. Fujishima, R. G. Yamada, K.-h. Masumoto, R. Kiuchi, M. Ishida, M. Ukai-Tadenuma, Y. Minami, et al. (2009)
PNAS 106, 15744-15749
   Abstract »    Full Text »    PDF »
A role for microRNAs in the Drosophila circadian clock.
S. Kadener, J. S. Menet, K. Sugino, M. D. Horwich, U. Weissbein, P. Nawathean, V. V. Vagin, P. D. Zamore, S. B. Nelson, and M. Rosbash (2009)
Genes & Dev. 23, 2179-2191
   Abstract »    Full Text »    PDF »
Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus.
H. Ito, M. Mutsuda, Y. Murayama, J. Tomita, N. Hosokawa, K. Terauchi, C. Sugita, M. Sugita, T. Kondo, and H. Iwasaki (2009)
PNAS 106, 14168-14173
   Abstract »    Full Text »    PDF »
The Evolution of the Cyanobacterial Posttranslational Clock from a Primitive "Phoscillator".
M. J.P. Simons (2009)
J Biol Rhythms 24, 175-182
   Abstract »    PDF »
A Role for Multiple Circadian Clock Genes in the Response to Signals That Break Seed Dormancy in Arabidopsis.
S. Penfield and A. Hall (2009)
PLANT CELL 21, 1722-1732
   Abstract »    Full Text »    PDF »
Circadian gene expression is resilient to large fluctuations in overall transcription rates.
C. Dibner, D. Sage, M. Unser, C. Bauer, T. d'Eysmond, F. Naef, and U. Schibler (2009)
EMBO J. 28, 123-134
   Abstract »    Full Text »    PDF »
Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator.
B. Akten, M. M. Tangredi, E. Jauch, M. A. Roberts, F. Ng, T. Raabe, and F. R. Jackson (2009)
J. Neurosci. 29, 466-475
   Abstract »    Full Text »    PDF »
Structural Insights into a Circadian Oscillator.
C. H. Johnson, M. Egli, and P. L. Stewart (2008)
Science 322, 697-701
   Abstract »    Full Text »    PDF »
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
Y.-I. Kim, G. Dong, C. W. Carruthers Jr, S. S. Golden, and A. LiWang (2008)
PNAS 105, 12825-12830
   Abstract »    Full Text »    PDF »
Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation.
R. Pattanayek, D. R. Williams, S. Pattanayek, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli (2008)
EMBO J. 27, 1767-1778
   Abstract »    Full Text »    PDF »
Genome Streamlining Results in Loss of Robustness of the Circadian Clock in the Marine Cyanobacterium Prochlorococcus marinus PCC 9511.
J. Holtzendorff, F. Partensky, D. Mella, J.-F. Lennon, W. R. Hess, and L. Garczarek (2008)
J Biol Rhythms 23, 187-199
   Abstract »    PDF »
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Y. Kitayama, T. Nishiwaki, K. Terauchi, and T. Kondo (2008)
Genes & Dev. 22, 1513-1521
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Integrating Circadian Timekeeping with Cellular Physiology.
M. C. Harrisingh and M. N. Nitabach (2008)
Science 320, 879-880
   Abstract »    Full Text »    PDF »
A systematic forward genetic analysis identified components of the Chlamydomonas circadian system.
T. Matsuo, K. Okamoto, K. Onai, Y. Niwa, K. Shimogawara, and M. Ishiura (2008)
Genes & Dev. 22, 918-930
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clock Gene Expression by Phosphorylation States of KaiC in Cyanobacteria.
Y. Murayama, T. Oyama, and T. Kondo (2008)
J. Bacteriol. 190, 1691-1698
   Abstract »    Full Text »    PDF »
Probing the Relative Importance of Molecular Oscillations in the Circadian Clock.
X. Zheng and A. Sehgal (2008)
Genetics 178, 1147-1155
   Abstract »    Full Text »    PDF »
2007: Signaling Breakthroughs of the Year.
E. M. Adler, J. F. Foley, N. R. Gough, and L. B. Ray (2008)
Science Signaling 1, eg1
   Abstract »    Full Text »    PDF »
Circadian rhythms of superhelical status of DNA in cyanobacteria.
M. A. Woelfle, Y. Xu, X. Qin, and C. H. Johnson (2007)
PNAS 104, 18819-18824
   Abstract »    Full Text »    PDF »
Intracellular Ca2+ Regulates Free-Running Circadian Clock Oscillation In Vivo.
M. C. Harrisingh, Y. Wu, G. A. Lnenicka, and M. N. Nitabach (2007)
J. Neurosci. 27, 12489-12499
   Abstract »    Full Text »    PDF »
Ordered Phosphorylation Governs Oscillation of a Three-Protein Circadian Clock.
M. J. Rust, J. S. Markson, W. S. Lane, D. S. Fisher, and E. K. O'Shea (2007)
Science 318, 809-812
   Abstract »    Full Text »    PDF »
The Circadian Clock-Related Gene pex Regulates a Negative cis Element in the kaiA Promoter Region.
S. Kutsuna, T. Kondo, H. Ikegami, T. Uzumaki, M. Katayama, and M. Ishiura (2007)
J. Bacteriol. 189, 7690-7696
   Abstract »    Full Text »    PDF »
The cyanobacterial circadian clock is based on the intrinsic ATPase activity of KaiC.
C. R. McClung (2007)
PNAS 104, 16727-16728
   Full Text »    PDF »
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
S. Kadener, D. Stoleru, M. McDonald, P. Nawathean, and M. Rosbash (2007)
Genes & Dev. 21, 1675-1686
   Abstract »    Full Text »    PDF »
A Functional Link between Rhythmic Changes in Chromatin Structure and the Arabidopsis Biological Clock.
M. Perales and P. Mas (2007)
PLANT CELL 19, 2111-2123
   Abstract »    Full Text »    PDF »
An allosteric model of circadian KaiC phosphorylation.
J. S. van Zon, D. K. Lubensky, P. R. H. Altena, and P. R. ten Wolde (2007)
PNAS 104, 7420-7425
   Abstract »    Full Text »    PDF »
Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling.
M. Amdaoud, M. Vallade, C. Weiss-Schaber, and I. Mihalcescu (2007)
PNAS 104, 7051-7056
   Abstract »    Full Text »    PDF »
A Mathematical Model for the Kai-Protein-Based Chemical Oscillator and Clock Gene Expression Rhythms in Cyanobacteria.
F. Miyoshi, Y. Nakayama, K. Kaizu, H. Iwasaki, and M. Tomita (2007)
J Biol Rhythms 22, 69-80
   Abstract »    PDF »
Structural and Biochemical Characterization of a Cyanobacterium Circadian Clock-modifier Protein.
K. Arita, H. Hashimoto, K. Igari, M. Akaboshi, S. Kutsuna, M. Sato, and T. Shimizu (2007)
J. Biol. Chem. 282, 1128-1135
   Abstract »    Full Text »    PDF »
A Cyanobacterial Circadian Clock Based on the Kai Oscillator.
T. Kondo (2007)
Cold Spring Harb Symp Quant Biol 72, 47-55
   Abstract »    PDF »
Transcriptional Feedback and Definition of the Circadian Pacemaker in Drosophila and Animals.
M. Rosbash, S. Bradley, S. Kadener, Y. Li, W. Luo, J. S. Menet, E. Nagoshi, K. Palm, R. Schoer, Y. Shang, et al. (2007)
Cold Spring Harb Symp Quant Biol 72, 75-83
   Abstract »    PDF »
The Multiple Facets of Per2.
U. Albrecht, A. Bordon, I. Schmutz, and J. Ripperger (2007)
Cold Spring Harb Symp Quant Biol 72, 95-104
   Abstract »    PDF »
Role of Phosphorylation in the Mammalian Circadian Clock.
K. Vanselow and A. Kramer (2007)
Cold Spring Harb Symp Quant Biol 72, 167-176
   Abstract »    PDF »
Integrating the Circadian Oscillator into the Life of the Cyanobacterial Cell.
S. S. Golden (2007)
Cold Spring Harb Symp Quant Biol 72, 331-338
   Abstract »    PDF »
Systems Biology of Mammalian Circadian Clocks.
H. R. Ueda (2007)
Cold Spring Harb Symp Quant Biol 72, 365-380
   Abstract »    PDF »
Bacterial Circadian Programs.
C. H. Johnson (2007)
Cold Spring Harb Symp Quant Biol 72, 395-404
   Abstract »    PDF »
labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC.
Y. Taniguchi, M. Katayama, R. Ito, N. Takai, T. Kondo, and T. Oyama (2007)
Genes & Dev. 21, 60-70
   Abstract »    Full Text »    PDF »
No Promoter Left Behind: Global Circadian Gene Expression in Cyanobacteria.
M. A. Woelfle and C. H. Johnson (2006)
J Biol Rhythms 21, 419-431
   Abstract »    PDF »
Properties, Entrainment, and Physiological Functions of Mammalian Peripheral Oscillators.
M. Stratmann and U. Schibler (2006)
J Biol Rhythms 21, 494-506
   Abstract »    PDF »
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
N. B. Ivleva, T. Gao, A. C. LiWang, and S. S. Golden (2006)
PNAS 103, 17468-17473
   Abstract »    Full Text »    PDF »
Casein Kinases I of the Silkworm, Bombyx mori: Their Possible Roles in Circadian Timing and Developmental Determination.
L. T. D. Trang, H. Sehadova, N. Ichihara, S. Iwai, K. Mita, and M. Takeda (2006)
J Biol Rhythms 21, 335-349
   Abstract »    PDF »
Predicting Regulation of the Phosphorylation Cycle of KaiC Clock Protein Using Mathematical Analysis.
H. Takigawa-Imamura and A. Mochizuki (2006)
J Biol Rhythms 21, 405-416
   Abstract »    PDF »
Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS).
K. Vanselow, J. T. Vanselow, P. O. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, and A. Kramer (2006)
Genes & Dev. 20, 2660-2672
   Abstract »    Full Text »    PDF »
Two-component signaling provides the major output from the cyanobacterial circadian clock.
C. R. McClung (2006)
PNAS 103, 11819-11820
   Full Text »    PDF »
A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria.
N. Takai, M. Nakajima, T. Oyama, R. Kito, C. Sugita, M. Sugita, T. Kondo, and H. Iwasaki (2006)
PNAS 103, 12109-12114
   Abstract »    Full Text »    PDF »
The BMAL1 C terminus regulates the circadian transcription feedback loop.
Y. B. Kiyohara, S. Tagao, F. Tamanini, A. Morita, Y. Sugisawa, M. Yasuda, I. Yamanaka, H. R. Ueda, G. T. J. van der Horst, T. Kondo, et al. (2006)
PNAS 103, 10074-10079
   Abstract »    Full Text »    PDF »
Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus.
R. M. Smith and S. B. Williams (2006)
PNAS 103, 8564-8569
   Abstract »    Full Text »    PDF »
Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods.
R. Pattanayek, D. R. Williams, S. Pattanayek, Y. Xu, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli (2006)
EMBO J. 25, 2017-2028
   Abstract »    Full Text »    PDF »
Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora..
M. Brunner and T. Schafmeier (2006)
Genes & Dev. 20, 1061-1074
   Abstract »    Full Text »    PDF »
Transcriptional Feedback Oscillators: Maybe, Maybe Not....
P. L. Lakin-Thomas (2006)
J Biol Rhythms 21, 83-92
   Abstract »    PDF »
Plant Circadian Rhythms.
C. R. McClung (2006)
PLANT CELL 18, 792-803
   Full Text »    PDF »
Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator.
T. Schafmeier, K. Kaldi, A. Diernfellner, C. Mohr, and M. Brunner (2006)
Genes & Dev. 20, 297-306
   Abstract »    Full Text »    PDF »
Circadian Rhythm of a TCA Cycle Enzyme Is Apparently Regulated at the Translational Level in the Dinoflagellate Lingulodinium polyedrum.
H. Akimoto, T. Kinumi, and Y. Ohmiya (2005)
J Biol Rhythms 20, 479-489
   Abstract »    PDF »
In Vivo Circadian Function of Casein Kinase 2 Phosphorylation Sites in Drosophila PERIOD.
J.-M. Lin, A. Schroeder, and R. Allada (2005)
J. Neurosci. 25, 11175-11183
   Abstract »    Full Text »    PDF »
The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock.
M. Elvin, J. J. Loros, J. C. Dunlap, and C. Heintzen (2005)
Genes & Dev. 19, 2593-2605
   Abstract »    Full Text »    PDF »
Noise in Gene Expression: Origins, Consequences, and Control.
J. M. Raser and E. K. O'Shea (2005)
Science 309, 2010-2013
   Abstract »    Full Text »    PDF »
Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
J. L. Ditty, S. R. Canales, B. E. Anderson, S. B. Williams, and S. S. Golden (2005)
Microbiology 151, 2605-2613
   Abstract »    Full Text »    PDF »
Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis.
S. L. Harmer and S. A. Kay (2005)
PLANT CELL 17, 1926-1940
   Abstract »    Full Text »    PDF »
A Novel Mutation in kaiC Affects Resetting of the Cyanobacterial Circadian Clock.
Y. B. Kiyohara, M. Katayama, and T. Kondo (2005)
J. Bacteriol. 187, 2559-2564
   Abstract »    Full Text »    PDF »
Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro.
M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama, and T. Kondo (2005)
Science 308, 414-415
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882